植物与植物生理

不同土壤水分条件下沙生柽柳(Tamarix taklamakanensis)的生理生化特征及适应性

展开
  • 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中南林业科技大学林木遗传育种实验室,湖南 长沙 410004
    3.中国林业科学研究院林业研究所林木遗传育种国家重点实验室,北京 100091
苏志豪(1981-),男,副研究员,主要从事植物保护生物学研究. E-mail: suzh@ms.xjb.ac.cn

收稿日期: 2020-04-03

  修回日期: 2020-05-18

  网络出版日期: 2021-03-05

基金资助

国家自然科学基金(U1803103);国家自然科学基金(31770703);中国科学院先导A项目(XDA2005020402)

Physiological and biochemical characteristics and adaptability of Tamarix taklamakanensis in different ecological habitats in the Tarim Basin

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
    3. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Received date: 2020-04-03

  Revised date: 2020-05-18

  Online published: 2021-03-05

摘要

沙生柽柳(Tamarix taklamakanensis)是我国特有种,是塔里木盆地流动沙丘上最抗旱树种,对固沙造林和荒漠化防治起到非常重要的作用。通过测定沙生柽柳种群在3种不同生境(沙漠公路绿化带、河床砾质荒漠、流动沙丘)的叶片含水量、叶绿素含量、抗氧化酶活性及渗透调节物质含量,探讨了沙生柽柳在不同生境下的生理生化特征及对荒漠极端干旱环境的适应机制。结果表明:随着土壤干旱程度的加剧,沙生柽柳叶片相对含水量逐渐下降;超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、总抗氧化能力(T-AOC)逐渐升高;过氧化氢酶(CAT)与硝酸还原酶(NR)活性逐渐降低;种群叶片内可溶性蛋白呈上升趋势。在最为干旱的流动沙丘,种群叶片叶绿素a含量、可溶性糖含量最高。在干旱胁迫条件下,沙生柽柳种群主要通过增高SOD活性、POD活性、总抗氧化能力及降低过氧化氢酶(CAT)、硝酸还原酶(NR)含量以维持活性氧代谢平衡;同时,通过大量积累渗透调节物质可溶性糖、可溶性蛋白、丙二醛以维持高渗透调节能力抵御干旱环境胁迫。

本文引用格式

苏志豪,周晓兵,姜小龙,王留强,公延明,康晓珊 . 不同土壤水分条件下沙生柽柳(Tamarix taklamakanensis)的生理生化特征及适应性[J]. 干旱区研究, 2021 , 38(1) : 198 -206 . DOI: 10.13866/j.azr.2021.01.21

Abstract

Tamarix taklamakanensis is a tree endemic to China and it is the most drought-resistant species in drifting sand dunes within the Tarim Basin. It plays an important role in sand fixation and desert prevention. We selected populations in three different habitats (green belt near the desert road, gravelly desert in riverbed, and drift sand dunes) to quantify the water status, chlorophyll contents, antioxidant enzyme activities, and osmotic adjustment substances contents. We evaluated the species’ physiological and biochemical characteristics in different habitats and its adaptive mechanisms to deal with extreme drought conditions. In soils with low moisture content, superoxide dismutase (SOD) activities, peroxidase (POD) activities, total antioxidant capacity, and soluble protein contents increased, whereas catalase (CAT) and nitrate reductase (NR) activities decreased. In the driest drift sand dune habitat, the population had highest chlorophyll a and soluble sugar contents. Under drought stress, T. taklamakanensis increased SOD and POD activities and total antioxidant capacity, while it decreased CAT and NR activities to maintain the metabolic balance of reactive oxygen. It increased soluble protein, soluble sugar, and malondialdehyde to maintain high osmotic adjustment ability for resisting drought environments.

参考文献

[1] 屠志方, 李梦先, 孙涛. 第五次全国荒漠化和沙化监测结果及分析[J]. 林业资源管理, 2016,45(1):1-13.
[1] [ Tu Zhifang, Li Mengxian, Sun Tao. The status and trend analysis of desertification and sandification[J]. Forest Resources Management, 2016,45(1):1-13. ]
[2] 黄海霞, 王刚, 陈年来. 荒漠灌木逆境适应性研究进展[J]. 中国沙漠, 2010,30(5):1060-1067.
[2] [ Huang Haixia, Wang Gang, Chen Nianlai. Advances of studies on adaptation of desert shrubs to environment stress[J]. Journal of Desert Research, 2010,30(5):1060-1067. ]
[3] 周紫鹃, 苏培玺, 解婷婷, 等. 不同生境下红砂(Reaumuria soongorica)的生理生化特征及适应性[J]. 中国沙漠, 2014,34(4):1007-1014.
[3] [ Zhou Zijuan, Su Peixi, Xie Tingting, et al. The physiological and biochemical characteristics and environmental adaptability of Reaumuria soongorica in different habitats[J]. Journal of Desert Research, 2014,34(4):1007-1014. ]
[4] 周海燕. 荒漠沙生植物生理生态学研究与展望[J]. 植物学通报, 2001,18(6):643-648.
[4] [ Zhou Haiyan. Current status and perspective of ecophysiological researches in psammophytes[J]. Chinese Bulletin of Botany, 2001,18(6):643-648. ]
[5] Larcher W. Physiological Plant Ecology[M]. Berlin: Springer Verlag, 1980, 302-303.
[6] 习金根, 郑金龙, 易克贤. 干旱胁迫对剑麻幼苗生理生化的影响[J]. 中国麻业科学, 2012,34(5):216-219.
[6] [ Xi Jingen, Zheng Jinlong, Yi Kexian. Effect of drought stress on physiology and biochemistry of sisal seedling[J]. Plant Fiber Sciences in China, 2012,34(5):216-219. ]
[7] Wang S M, Wan C G, Wang Y R. The characteristics of Na+, K+ and free praline distribution in several drought-resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004,56:525-539.
[8] Hsieh T H, Lee J T, Yang P T, et al. Heterology expression of the Arabidopsis C-repeat/Dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiology, 2012,129:1086-1094.
[9] 李锡文. 中国植物志[M]. 北京: 科学出版社, 1990: 159.
[9] [ Li Xiwen. Flora of China[M]. Beijing: Science Press, 1990: 159. ]
[10] 刘铭庭. 新疆柽柳属植物研究及推广应用[J]. 中国沙漠, 1996,16(4):428-429.
[10] [ Liu Mingting. Tamarix L. and its extending in the desert region of Xinjiang[J]. Journal of Desert Research, 1996,16(4):428-429. ]
[11] 袁宏波, 张锦春, 褚建民, 等. 库姆塔格沙漠典型植物种群年龄结构特[J]. 西北植物学报, 2011,31(11):2304-2309.
[11] [ Yuan Hongbo, Zhang Jinchun, Chu Jianmin, et al. Characteristics of the age plant populations structures of three typical in Kumtag Desert[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011,31(11):2304-2309. ]
[12] 何兴东, 高玉葆, 任安芝. 风沙干扰在濒危植物沙生柽柳群落形成演变过程中的作用[J]. 植物学报, 2003,45(11):1285-1290.
[12] [ He Xingdong, Gao Yubao, Ren Anzhi. Role of wind-sand disturbance in the formation and development of Tamarix taklamakanensis community[J]. Chinese Bulletin of Botany, 2003,45(11):1285-1290. ]
[13] 苏志豪, 潘伯荣, 卓立, 等. 未来气候变化对特有物种沙生柽柳分布格局的影响及其保护启示[J]. 干旱区研究, 2018,35(1):150-155.
[13] [ Su Zhihao, Pan Borong, Zhuo Li, et al. Impact of future climate change on distribution pattern of Tamarix taklamakanensis and its conservation revelation[J]. Arid Zone Research, 2018,35(1):150-155. ]
[14] 尹林克. 中亚荒漠生态系统中的关键种——柽柳(Tamarix chinensis)[J]. 干旱区研究, 1995,12(3):43-47.
[14] [ Yin Linke. Tamarix chinensis: The keyston species of desert ecosystem[J]. Arid Zone Research, 1995,12(3):43-47. ]
[15] 蒋进, 高海峰. 柽柳属植物抗旱性排序研究[J]. 干旱区研究, 1992,9(4):41-45.
[15] [ Jiang Jin, Gao Haifeng. A study on drought resistant ordination of Tamarix chinensis[J]. Arid Zone Research, 1992,9(4):41-45. ]
[16] 彭艳梅. 塔克拉玛干沙漠塔中地区大气浊度特征分析及影响研究[D]. 乌鲁木齐: 新疆大学, 2013.
[16] [ Peng Yanmei. Analysis on Atmospheric Turbidity Characteristics and its Impact in Tazhong of Taklimakan Desert[D]. Urumqi: Xinjiang University, 2013. ]
[17] 幕文玲. 塔克拉玛干沙漠人工绿地与自然沙面辐射平衡日变化对比研究[D]. 乌鲁木齐: 新疆师范大学, 2017.
[17] [ Mu Wenling. Comparison and Research on the Daily Variation of Land Surface Radiation Balance in Artificial Vegetation and Nature Desert in Taklimakan Desert[D]. Urumqi: Xinjiang Normal University, 2017. ]
[18] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 130-132.
[18] [ Li Hesheng. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000: 130-132. ]
[19] Rao M V, Paliyath C, Ormrod D P. Ultraviolet-b and ozone-induced biochemical changes in antioxidant enzymes of Arabidovsis thaliana[J]. Plant Physiology, 1996,110:125-136.
[20] Giannopolitis C, Ries N. Superoxide dismutases I. Occurrence in higher plants[J]. Plant Physiology, 1977,59:309-314.
[21] Aravind P, Prasad M N V. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L. : A free floating fresh water macrophyte[J]. Plant Physiology and Biochemistry, 2003,41:391-397.
[22] Katalinic V, Milos M, Kulisic T, et al. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols[J]. Food Chemistry, 2006,94(4):550-557.
[23] 中国科学院上海植物生理研究所, 上海市植物生理学会. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999: 305-306.
[23] [ Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, Shanghai Plant Physiology Society. A Guide to Modern Plant Physiology Experiments[M]. Beijing: Science Press, 1999: 305-306. ]
[24] 李合生, 孙群, 赵世杰. 植物生理生化实验原理及技术[M]. 北京: 高等教育出版社, 2000: 125-127.
[24] [ Li Hesheng, Sun Qun, Zhao Shijie. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000: 125-127. ]
[25] 上海植物生理学会. 植物生理学手册[M]. 北京: 科学技术出版社, 1985.
[25] [ Shanghai Plant Physiology Society. Plant Physiology Manual[M]. Beijing: Science and Technology of China Press, 1985. ]
[26] 白宝璋, 汤学军. 植物生理学测试技术[M]. 北京: 中国科技出版社, 1993: 156-157.
[26] [ Bai Baozhang, Tang Xuejun. Testing Techniques of Plant Physiology[M]. Beijing: China Science and Technology Press, 1993: 156-157. ]
[27] 张志良. 植物生理学试验指导[M]. 北京: 高等教育出版社, 1991.
[27] [ Zhang Zhiliang. Guide to Plant Physiology Experiments[M]. Beijing: Higher Education Press, 1991. ]
[28] 刘祖棋, 张石城. 植物抗性生理学[M]. 北京: 中国农业出版社, 1994.
[28] [ Liu Zhuqi, Zhang Shicheng. Plant Resistance Physiology[M]. Beijing: China Agriculture Press, 1994. ]
[29] 傅瑞树. 苏铁耐旱、抗寒及光合生理特性研究[J]. 武夷科学, 2001,17(1):44-50.
[29] [ Fu Ruishu. Study on physiological characters of drought resistance, cold resistance and photosynjournal of Cycas revoluta[J]. Wuyi Science Journal, 2001,17(1):44-50. ]
[30] 王孟本, 李洪建, 柴宝峰. 柠条(Caragana korshinskii)的水分生理生态学特征[J]. 植物生态学报, 1996,20(6):494-501.
[30] [ Wang Mengben, Li Hongjian, Chai Baofeng. Water ecophysiological characteristics of Caragana korshinskii[J]. Acta Phytoecologica Sinica, 1996,20(6):494-501. ]
[31] 马剑英, 周邦才, 夏敦胜, 等. 荒漠植物红砂叶绿素和脯氨酸累积与环境因子的相关分析[J]. 西北植物学报, 2007,27(4):769-775.
[31] [ Ma Jianying, Zhou Bangcai, Xia Dunsheng, et al. Relationships between environmental factors and chlorophyll, proline cumulation in desert plant Reaumuria soongorica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007,27(4):769-775. ]
[32] Faria T, Silverio D, Breia E, et al. Differences in the response of carbon assimilation to summer stress(water deficits, high light and temperature) in four Mediterranean tree species[J]. Physiologia Plantarum, 1998,102:419-428.
[33] 刘玉冰, 张腾国, 李新荣, 等. 红砂(Reaumuria soongorica)忍耐极度干旱的保护机制: 叶片脱落和茎中蔗糖累积[J]. 中国科学: 生命科学, 2006,36(4):328-333.
[33] [ Liu Yubing, Zhang Tengguo, Li Xinrong, et al. Protective mechanisms against extreme drought of Reaumuria soongorica: Leaf shedding and sucrose accumulation in stems[J]. Scientia Sinica(Vitae), 2006,36(4):328-333. ]
[34] 杨九艳, 杨劼, 杨明博, 等. 不同生境狭叶锦鸡儿对干旱胁迫的生态适应机理研究[J]. 西北植物学报, 2009,29(12):2476-2482.
[34] [ Yang Jiuyan, Yang Jie, Yang Mingbo, et al. Mechanisms of ecological adaptation of Caragana stenophylla to drought stress in different habitats[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009,29(12):2476-2482. ]
[35] Sun Y R, Zhu J J, Kang H Z. Effects of soil water condition on membrane lipid peroxidation and protective enzyme activities of Pinus sylvestris var. mongolica seedlings[J]. Chinese Journal of Ecology, 2008,27(5):729-734.
[36] 韩蕊莲, 李丽霞, 梁宗锁, 等. 干旱胁迫下沙棘膜脂过氧化保护体系研究[J]. 西北林学院学报, 2002,17(4):1-5.
[36] [ Han Ruilian, Li Lixia, Liang Zongsuo, et al. Seabuckthorn membrane-lipid peroxidation system under drought stress[J]. Journal of Northwest Forestry University, 2002,17(4):1-5. ]
[37] Feierabend J, Schaan C, Fertwig B. Photoincativation of catalase occursunder both high and low temperature stress conditions and accompanies photoinhibition of photosystem II[J]. Plant Physiology, 1992,100:1554-1561.
[38] Smirnoff N, Winslow M D, Stewart U R. Nitrate reductase activity in leaves of barley (Hordeum vulgare) and durum wheat (Tricitum durum) during field and rapidly applied water deficits[J]. Journal of Experimental Botany, 1985,36:1200-1208.
[39] 周海燕. 中国东北科尔沁沙地两种建群植物的抗旱机理[J]. 植物研究, 2002,22(1):51-55.
[39] [ Zhou Haiyan. Drought-resistant mechanism of two edificatos in horqin sandy land of Northeast China[J]. Bulletin of Botanical Research, 2002,22(1):51-55. ]
[40] Cai K Z, Wu X Z, Luo S M. Effects of water stress on osmolytes at different growth stages in rice leaves and roots[J]. Journal of Plant Ecology, 2008,32(2):491-500.
[41] 王霞, 侯平, 尹林克, 等. 水分胁迫对柽柳植物可溶性物质的影响[J]. 干旱区研究, 1999,16(2):1-10.
[41] [ Wang Xia, Hou Ping, Yin Linke, et al. Effect of soluble substance of Tamarix under soil-water stress slowly[J]. Arid Zone Research, 1999,16(2):1-10. ]
[42] 张明生, 谢波, 谈锋, 等. 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J]. 中国农业科学, 2003,36(1):13-16.
[42] [ Zhang Mingsheng, Xie Bo, Tan Feng, et al. Relationship among soluble protein, Chlorophyll and ATP in sweet potato under water stress with drought resistance[J]. Scientia Agricultura Sinica, 2003,36(1):13-16. ]
[43] 石松利. 不同生境四合木生理生态适应机制及濒危机理研究[D]. 呼和浩特: 内蒙古大学, 2009.
[43] [ Shi Songli. Studies on Eco-physiological Adaptation Mechanism and Endangering Mechanism of Tetraena mongolica Maxim. in Different Habitats[D]. Hohhot: Inner Mongolia University, 2009. ]
[44] 徐世健, 安黎哲, 冯虎元, 等. 两种沙生植物抗旱生理指标的比较研究[J]. 西北植物学报, 2000,20(2):224-228.
[44] [ Xu Shijian, An Lizhe, Feng Huyuan, et al. Comparative study on drought-resistance indexes of two desert plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000,20(2):224-228. ]
[45] 祖元刚, 张文辉, 阎秀峰, 等. 1999. 濒危植物裂叶沙参保护生物学[M]. 北京: 科学出版社, 1999.
[45] [ Zhu Yuangang, Zhang Wenhui, Yan Xiufeng, et al. Conservation Biology of the Endangered Plant Adenophora Lobophylla[M]. Beijing: Science Press, 1999. ]
文章导航

/