天气与气候

1980—2017年青海省地表温度时空变化特征

展开
  • 1.青海师范大学地理科学学院,青海 西宁 810008
    2.青海省自然地理与环境过程重点实验室,青海 西宁 810008
    3.青藏高原地表过程与生态保育教育部重点实验室,青海 西宁 810008
    4.德州学院资源环境与规划学院,山东 德州 253023
    5.太原师范学院城镇与区域发展研究所,山西 晋中 030619
赵美亮(1995-),男,硕士研究生,研究方向为地表环境过程. E-mail: zhaomeiliang2014@163.com

收稿日期: 2020-02-27

  修回日期: 2020-06-04

  网络出版日期: 2021-03-05

基金资助

国家重点研发计划项目(2017YFC0404304);青海省科技厅重大专项项目(2019-SF-A4);青海省自然科学基金项目(2018-ZJ-903);青海省“高端创新人才千人计划”端青人才字[2016]32号

Spatial-temporal variation characteristics of land surface temperature in Qinghai Province from 1980 to 2017

Expand
  • 1. School of Geographical Science of Qinghai Normal University, Xining 810008, Qinghai, China
    2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Xining 810008, Qinghai, China
    3. MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, Qinghai, China
    4. College of Resource, Environment and Planning, Dezhou University, Dezhou 253023, Shandong, China
    5. Institute of Urban and Regional Development, Taiyuan Normal University, Jinzhong 030619, Shanxi, China

Received date: 2020-02-27

  Revised date: 2020-06-04

  Online published: 2021-03-05

摘要

地表温度是区域气候、农业生产及土壤养分的重要影响因素,分析地表温度的变化规律对深入了解气候变化的原因及农业生产的布局具有重要意义。基于青海省35个气象基站1980—2017年逐日地表温度、气温和风速数据,采用线性趋势分析、Mann-Kendall非参数检验、小波分析等数理统计方法对青海省地表温度的时空变化特征及其与气温、风速、海拔等因子的关系进行了研究。结果表明:(1) 青海省年均地表温度呈波动上升的趋势,增温速率达0.68 ℃·(10a)-1P<0.01),2001年发生突变;地表温度变化存在明显的季节差异,冬季地温变化速率最明显,为0.77 ℃·(10a)-1P<0.01),其他季节差异不大;青海省年均地表温度具有4~7 a和11~16 a两种周期变化;(2) 全年地表平均温度分别在青南高原和祁连山区形成2个低温区,在柴达木盆地和东部农业区形成2个高温区,且低温区的增温速率较大;(3) 全年及各季地表平均温度与平均气温呈显著正相关,与风速、海拔呈显著负相关关系;(4) 地表平均温度呈现出明显的垂直递减规律且海拔高的地区变暖趋势更加明显。

本文引用格式

赵美亮,曹广超,曹生奎,刘富刚,袁杰,张卓,刁二龙,付建新 . 1980—2017年青海省地表温度时空变化特征[J]. 干旱区研究, 2021 , 38(1) : 178 -187 . DOI: 10.13866/j.azr.2021.01.19

Abstract

Land surface temperature is an important factor affecting the regional climate, agricultural production, and soil nutrients. It is of great significance to analyze the variation law of ground temperature to understand the causes of climate change and the layout of agricultural production. The characteristics of land surface temperature change and its relationship with the meteorological factor in the Qinghai Province were studied by using linear trend analysis, the Mann-Kendall mutation test, and wavelet analysis based on the data of daily land surface temperature, air temperature, and wind speed data from 35 meteorological stations in the study area from 1980 to 2017. The results showed that: (1) The annual average land surface temperature in Qinghai Province showed a fluctuating and rising trend at a rate of 0.68 °C·(10a)-1P<0.01), and the mutation point was in 2001. There was a significant seasonal difference in the change of surface temperature, and the rate of change was most obvious in winter, which was 0.77 °C· (10a)-1 (P<0.01). There was little difference in the other seasons. The average annual land surface temperature of Qinghai Province was based on two periodic changes of 4-7 a and 11-16 a. (2) The average annual land surface temperature of two low-temperature centers in the Qingnan plateau and Qilian mountain area was compared with two high-temperature centers of the Qaidam Basin and Eastern agricultural area, and the rate of temperature increase of the low-temperature center was faster. (3) The annual and quarterly average land surface temperatures had a significant positive correlation with the average temperature but were negatively correlated with wind speed and altitude. (4) The average surface temperature showed an obvious vertical decreasing pattern, and the warming trend was more obvious in areas with high altitude.

参考文献

[1] IPCC. Summary for Policy Makers of the Synthesis Report of the IPCC Fifth Assessment Report [M]. Cambridge: Cambridge University Press, 2013.
[2] 王佳琳, 潘志华, 韩国琳, 等. 1961—2010年中国0 cm地温变化特征及其与气温变化的关系[J]. 资源科学, 2016,38(9):1733-1741.
[2] [ Wang Jialin, Pan Zhihua, Han Guolin, et al. Variation in ground temperature at a depth of 0 cm and the relationship with air temperature in China from 1961 to 2010[J]. Resources Science, 2016,38(9):1733-1741. ]
[3] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability[M/OL]. Cambridge: Cambridge University Press. http://www.Ipcc.ch/report/ar5/wg2/.
[4] 王风, 宋春雨, 韩晓增, 等. 东北黑土区土壤温度变化特征[J]. 黑龙江农业科学, 2006(6):31-33.
[4] [ Wang Feng, Song Chunyu, Han Xiaozeng, et al. Characteristics of soil temperature dynamics in the black soil area of Northeast China[J]. Heilongjiang Agricultural Sciences, 2006(6):31-33. ]
[5] 张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009,46(2):227-234.
[5] [ Zhang Huizhi, Shi Xuezheng, Yu Dongsheng, et al. Seasonal and regional variations of soil temperature in China[J]. Acta Pedologica Sinica, 2009,46(2):227-234. ]
[6] 高振荣, 李红英, 曹淑超, 等. 近31 a河西走廊地区深层地温变化及突变分析[J]. 干旱区地理, 2013,36(6):1006-1012.
[6] [ Gao Zhenrong, Li Hongying, Cao Shuchao, et al. Deep ground temperature variation and mutation of the Hexi Corridor Region in recent 31 years[J]. Arid Land Geography, 2013,36(6):1006-1012. ]
[7] 肖辉林. 土壤温度上升与森林衰退[J]. 热带亚热带土壤科学, 1995(4):246-249.
[7] [ Xiao Huilin. Increased soil temperature and forest decline[J]. Tropical and Subtropical Soil Science, 1995(4):246-249. ]
[8] 周志田, 成升魁, 刘允芬. 中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探[J]. 资源科学, 2002,24(2):83-87.
[8] [ Zhou Zhitian, Cheng Shengkui, Liu Yunfen, et al. CO2 emission of soil under different land-use types in subtropical red soil hilly areas in China: Preliminary exploration[J]. Resources Science, 2002,24(2):83-87. ]
[9] 程清平, 王平, 徐强. 1960—2013年云南地面温度时空变化特征[J]. 水土保持研究, 2017,24(6):111-121, 397.
[9] [ Cheng Qingping, Wang Ping, Xu Qiang. Temporal and spatial variation characteristics of surface temperature in Yunnan during 1960-2013[J]. Research of Soil and Water Conservation, 2017,24(6):111-121, 397. ]
[10] 王雪姣, 王森, 吉春容, 等. 1961—2015年新疆0 cm地温的时空分布特征及突变分析[J]. 干旱区资源与环境, 2018,32(4):165-169.
[10] [ Wang Xuejiao, Wang Sen, Ji Chunrong, et al. Spatial-temporal characteristics and mutation analysis of ground temperature in Xingjiang from 1961 to 2015[J]. Journal of Arid Land Resources and Environment, 2018,32(4):165-169. ]
[11] 张威, 纪然. 辽宁省地表温度时空变化及影响因素分析[J]. 生态学报, 2019,39(18):1-13.
[11] [ Zhang Wei, Ji Ran. Analysis of spatio-temporal variation and factors influencing surface temperature in Liaoning Province[J]. Acta Ecologica Sinica, 2019,39(18):6772-6784. ]
[12] Huang L, Liu J, Shao Q, et al. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau[J]. Climatic Change, 2011,109(3/4):479-502.
[13] 张焕平, 张占峰, 汪青春, 等. 近40年青海浅层地温的变化特征[J]. 中国农业气象, 2013,34(2):146-152.
[13] [ Zhang Huanping, Zhang Zhanfeng, Wang Qingchun, et al. Variation characteristics of shallow soil temperature in Qinghai Province in last 40 years[J]. Chinese Journal of Agrometeorology, 2013,34(2):146-152. ]
[14] 韩有香, 李国山. 近55年久治县0 cm地温变化特征及成因分析[J]. 青海气象, 2018(4):45-51.
[14] [ Han Youxiang, Li Guoshan. Characteristics and causes of ground temperature variation of 0 cm in jiuzhi county in recent 55 years[J]. Qinghai Meteorological, 2018(4):45-51. ]
[15] 魏凤英. 现代气候统计诊断与预测技术[M]. 第二版. 北京: 气象出版社, 2007.
[15] [ Wei Fengying. Modern Climate Statistical Diagnosis and Prediction Techniques[M]. Second Edition. Beijing: China Meteorological Press, 2007. ]
[16] Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945,13:245-259.
[17] Kendall M G. Rank Correlation Methods[M]. London: Griffin, 1975.
[18] Ding Jin, Cuo Lan, Zhang Yongxin, et al. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963-2015[J]. Scientific Reports, 2018,8(1):8-14.
[19] Zhang Q, Xu C Y, Chen Y D. Wavelet-based characterization of water level behaviors in the Pearl estuary, China[J]. Stochastic Enviromental Research and Risk Assessment, 2010,24(1):81-92.
[20] Liu D L, Liu X Z, Li B C, et al. Multiple time scale analysis of river runoff using wavelet transform for Dagujia River Basin, Yantai, China[J]. Chinese Geographical Science, 2009,19(2):158-167.
[21] 程清平, 王平, 谭小爱. 1961—2013年贵州省地面温度时空变化特征[J]. 南水北调与水利科技, 2018,16(2):122-131.
[21] [ Cheng Qingping, Wang Ping, Tan Xiaoai. Temporal and spatial variation characteristics of surface temperature in Guizhou during 1961-2013[J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(2):122-131. ]
[22] 徐建华. 现代地理学中的数学方法[M]. 第二版. 北京: 高等教育出版社, 2002.
[22] [ Xu Jianhua. Mathematical Methods in Modern Geography[M]. Second Edition. Beijing: Higher Education Press, 2002. ]
[23] 孙栋元, 齐广平, 鄢继选, 等. 疏勒河干流降水变化特征[J]. 干旱区研究, 2020,37(2):291-303.
[23] [ Sun Dongyuan, Qi Guangping, Yan Jixuan, et al. Research on variation characteristics of precipitation in the mainstream of Shule River[J]. Arid Zone Research, 2020,37(2):291-303. ]
[24] 谭娇, 丁建丽, 张钧泳, 等. 1961—2014年新疆北部地区气温时空变化特征[J]. 干旱区研究, 2018,35(5):1181-1191.
[24] [ Tan Jiao, Ding Jianli, Zhang Junyong, et al. Spatiotemporal variation of temperature in North Xinjiang during the period of 1961-2014[J]. Arid Zone Research, 2018,35(5):1181-1191. ]
[25] 冯禹昊, 朱江玲. 基于Morlet小波的辽河径流量变化及其成因分析[J]. 水土保持研究, 2019,26(2):208-215.
[25] [ Feng Yuhao, Zhu Jiangling. Analysis on runoff change and the dring force of the Liaohe River Basin Based on Morlet Wavelet[J]. Research of Soil and Water Conservation, 2019,26(2):208-215. ]
[26] 彭海, 姚宜斌, 雷祥旭. 1979—2014年青藏高原地表温度变化特征分析[J]. 测绘地理信息, 2016,41(6):49-53.
[26] [ Peng Hai, Yao Yibin, Lei Xiangxu. Analysis of surface temperature variation over the Tibetan Plateau from 1979 to 2014[J]. Journal of Geomatics, 2016,41(6):49-53. ]
[27] 朱伊, 范广洲, 华维, 等. 1981—2015年青藏高原地表温度的时空变化特征分析[J]. 西南大学学报(自然科学版), 2018,40(11):127-140.
[27] [ Zhu Yi, Fan Guangzhou, Hua Wei, et al. Analysis of the temporal and spatial variation in land surface temperature over the Qinghai-Tibet Plateau from 1981 to 2015[J]. Journal of Southwest University (Natural Science Edition), 2018,40(11):127-140. ]
[28] 贾金明, 朱腾冉, 王惠芳, 等. 濮阳市0 cm地温变化特征及成因分析[J]. 气象科技, 2009,37(3):330-335.
[28] [ Jia Jinming, Zhu Tengran, Wang Huifang, et al. Characteristics and causal analysis of ground temperature variation in Puyang[J]. Meteorological Science and Technology, 2009,37(3):330-335. ]
[29] 李丽, 张正勇, 刘琳, 等. 基于DEM的天山山区气温时空模拟研究[J]. 干旱区研究, 2018,35(4):855-863.
[29] [ Li Li, Zhang Zhengyong, Liu Lin, et al. Spatiotemporal distribution of temperature in the Tianshan Mountains based on DEM[J]. Arid Zone Research, 2018,35(4):855-863. ]
[30] Guo Bing, Zang Wenqian, Yang Fei, et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015[J]. Journal of Arid Land, 2020,12(1):1-17.
文章导航

/