天气与气候

边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究

展开
  • 1.兰州大学大气科学学院,甘肃 兰州 730000
    2.中国气象局兰州干旱气象研究所,甘肃 兰州 730020
魏倩(1994-),女,硕士研究生,主要从事大气动力学和中尺度数值天气预报研究. E-mail: weiq17@lzu.edu.cn

收稿日期: 2020-04-27

  修回日期: 2020-05-24

  网络出版日期: 2021-03-05

基金资助

中国沙漠气象科学研究基金项目(Sqj2016003);国家自然科学基金项目(41375019);国家自然科学基金项目(41375033)

Impact of boundary layer parameterization schemes on the simulation of a dust event over Northwest China

Expand
  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
    2. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, Gansu, China

Received date: 2020-04-27

  Revised date: 2020-05-24

  Online published: 2021-03-05

摘要

使用耦合化学模块的高分辨率中尺度数值模式WRF-Chem3.4,结合近地层观测资料评估YSU、MYJ、QNSE、MYNN2.5和BouLac共5种边界层参数化方案对2007年3月27日西北地区一次沙尘天气过程模拟效果的影响,结果显示5种边界层参数化方案均可模拟出此次沙尘天气的发展演变过程,其中YSU和BouLac方案模拟出相对较高的地表摩擦速度、10 m风速、2 m温度和地面PM10浓度以及相对较低的2 m相对湿度,从而模拟的地表沙尘天气过程较强,MYJ、QNSE和MYNN2.5方案模拟的地表沙尘天气则相对较弱,这表明不同边界层参数化方案通过摩擦速度的不同模拟效果对沙尘排放通量和PM10浓度的模拟有重要影响,较大的摩擦速度会使起沙参数化方案计算的沙尘排放通量和PM10浓度更高,加之午后近地层的强风、高温和低湿特征对沙尘天气的增强作用,使得BouLac方案模拟的沙尘天气最强,而QNSE方案的模拟结果最弱;利用民勤站观测资料对5种边界层参数化方案模拟结果的统计分析表明,不同方案对民勤站沙尘暴前后有关气象要素的模拟效果存在一定的差异,其中QNSE方案对PM10浓度的模拟效果最好,BouLac方案对10 m风速的模拟效果最好,YSU方案对2 m温度和2 m相对湿度的模拟效果最好,整体而言,YSU方案对民勤站近地层气象要素的模拟有一定的优势,QNSE方案的模拟结果相对最差。

本文引用格式

魏倩,隆霄,赵建华,韩子霏,王思懿 . 边界层参数化方案对一次西北地区沙尘天气过程影响的数值模拟研究[J]. 干旱区研究, 2021 , 38(1) : 163 -177 . DOI: 10.13866/j.azr.2021.01.18

Abstract

In this study, WRF-Chem(version 3.4) model was used to compare the performance of different Planetary Boundary Layer (PBL) parameterization namely, the YSU(Yonsei University), MYJ(Mellor-Yamada-Janjic), QNSE(Quasi-Normal Scale Elimination), MYNN2.5(Mellor-Yamada-Nakanisfii and Niino 2.5) and BouLac PBL schemes, over the dust event in northwest china on 27 March 2007. Surface observations were used for comparisons and evaluating model performance for meteorological variables. It is shown that simulations with the five PBL schemes can successfully reproduce the evolution of the dust event. The YSU and BouLac schemes produced higher surface friction velocity, 10 m wind speed, 2 m air temperature and surface PM10 concentration and lower 2-mrelative humidity, thus simulating stronger weather processes than those of the MYJ, QNSE and MYNN2.5 schemes. These results indicate that different boundary layer schemes affect the dust emission flux and PM10 concentration through different simulation effects of friction velocity. The dust emission flux and PM10 concentration tend to increase with higher friction velocity. Therefore, the dust event was enhanced due to the high friction velocity and the characteristics of high temperature as well as lower humidity in near-surface layer in the afternoon. As a result, the simulated dust event with the BouLac scheme was the strongest while the weakest by the QNSE scheme. Observations from Minqin meteorological station are used to validate the simulated results over Minqin region. Statistical analysis of the five simulations shows that the QNSE scheme simulated better PM10 concentration, the BouLac scheme performs well for 10 m wind speed and the YSU scheme resulted in the best model performance for simulating air temperature and relative humidity at 2 m. Overall, the YSU scheme was concluded as the best PBL scheme for the dust storm and the QNSE scheme was the worst one.

参考文献

[1] 张强. 大气边界层气象学研究综述[J]. 干旱气象, 2003,21(3):74-78.
[1] [ Zhang Qiang. Review of atmospheric boundary layer meterology[J]. Arid Meteorology, 2003,21(3):74-78. ]
[2] Banks R F, Tiana-Alsina J, Maria Baldasano J, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176-177:185-201.
[3] Milovac J, Warrach-Sagi K, Behrendt A, et al. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 2016,121(2):624-649.
[4] Xie B, Fung J C H, Chan A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. Journal of Geophysical Research, 2012,117(D12103).
[5] 张碧辉, 刘树华, 马雁军, 等. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J]. 地球物理学报, 2012,55(7):2239-2248.
[5] [ Zhang Bihui, Liu Shuhua, Ma Yanjun, et al. The effect of MYJ and YSU schemes on the simulation of boundary layer[J]. Chinese Journal of Geophysics, 2012,55(7):2239-2248. ]
[6] 黄文彦, 沈新勇, 王卫国, 等. 边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014,57(5):1399-1414.
[6] [ Huang Wenyan, Shen Xinyong, Wang Weiguo, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(5):1399-1414. ]
[7] 王丽霞, 王颖, 赖锡柳, 等. WRF模式不同边界层参数化方案模拟兰州冬季边界层高度的研究[J]. 高原气象, 2017,36(1):162-172.
[7] [ Wang Lixia, Wang Ying, Lai Xiliu, et al. Study on the simulation of boundary layer height in Lanzhou in winter using WRF model with different boundary layer parameterization schemes[J]. Plateau Meteorology, 2017,36(1):162-172. ]
[8] 孟露, 赵天良, 杨兴华, 等. 塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估[J]. 气象科学, 2018,38(2):157-166.
[8] [ Meng Lu, Zhao Tianliang, Yang Xinghua, et al. An assessment of atmospheric boundary layer schemes over the Taklimakan Desert hinterland[J]. Journal of the Meteorological Sciences, 2018,38(2):157-166. ]
[9] Gunwani P, Mohan M. Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India[J]. Atmospheric Research, 2017,194(9):43-65.
[10] Mohan M, Gupta M. Sensitivity of PBL parameterizations on PM10, and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India[J]. Atmospheric Environment, 2018,185:53-63.
[11] Banks R F, Baldasano J M. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain[J]. Science of The Total Environment, 2016,572:98-113.
[12] Sathyanadh A, Prabha T V, Balaji B, et al. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley[J]. Atmospheric Research, 2017,193:125-141.
[13] 丁成慧, 李江南, 赵杨洁, 等. 边界层参数化方案对南海秋季台风“莎莉嘉”(2016)模拟的影响[J]. 热带气象学报, 2018,34(5):657-673.
[13] [ Ding Chenghui, Li Jiangnan, Zhao Yangjie, et al. The influence of boundary layer parameterization schemes on autumn typhoon SARIKA(2016) in south China Sea[J]. Journal of Tropical Meteorology, 2018,34(5):657-673. ]
[14] 温晓培, 隆霄, 张述文, 等. 边界层参数化方案对台风SANBA初生阶段影响的数值模拟研究[J]. 热带气象学报, 2016,32(3):346-357.
[14] [ Wen Xiaopei, Long Xiao, Zhang Shuwen, et al. Parameterization schemes on typhoon SANBA during its initial phase[J]. Journal of Tropical Meteorology, 2016,32(3):346-357. ]
[15] Liu J, Zhang F, Pu Z. Numerical simulation of the rapid intensification of hurricane Katrina(2005): Sensitivity to boundary layer parameterization schemes[J]. Advances in Atmospheric Sciences, 2017,34(4):482-496.
[16] 崔驰潇, 包云轩, 袁成松, 等. 不同边界层参数化方案对江苏地区一次平流雾过程的模拟影响[J]. 大气科学, 2018,42(6):1344-1362.
[16] [ Cui Chixiao, Bao Yunxuan, Yuan Chengsong, et al. Influence of different boundary layer parameterization schemes on the simulation of an advection fog process in Jiangsu[J]. Chinese Journal of Atmospheric Sciences, 2018,42(6):1344-1362. ]
[17] Mylonas M P, Nastos P T, Matsangouras I T. PBL parameterization schemes sensitivity analysis on WRF modeling of a tornadic event environment in Skala Lakonia in September 2015[J]. Atmospheric Research, 2018,208:116-131.
[18] 高笃鸣, 李跃清, 蒋兴文, 等. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J]. 大气科学, 2016,40(2):371-389.
[18] [ Gao Duming, Li Yueqing, Jiang Xingwen, et al. Influence of planetary boundary layer parameterization schemes on the prediction of rainfall with different magnitudes in the Sichuan Basin using the WRF model[J]. Chinese Journal of Atmospheric Sciences, 2016,40(2):371-389. ]
[19] 李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017,36(2):340-357.
[19] [ Li Fei, Zou Han, Zhou Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in Southeast Tibet[J]. Plateau Meteorology, 2017,36(2):340-357. ]
[20] Wang J K, Zhang B H, Zhang H D, et al. The impacts of three PBL schemes on the simulation of boundary layer meteorological factors and air pollutants in Northern China[J]. IOP Conference Series: Earth and Environmental Science, 2019,227(5):98-113.
[21] 刘筱冉, 王金艳, 邱继勇, 等. 起沙方案对西北地区沙尘过程模拟的影响[J]. 环境保护科学, 2018,44(4):69-76.
[21] [ Liu Xiaoran, Wang Jinyan, Qiu Jiyong, et al. Impact of dust emission schemes on the simulation of dust storms in the Northwest region[J]. Environmental Protection Science, 2018,44(4):69-76. ]
[22] 黄豪杰. 基于超大尺度结构模化的沙尘暴及沙墙形态数值研究[D]. 兰州: 兰州大学, 2018.
[22] [ Huang Haojie. Numerical Studies on Sand-Dust Storms and Sand Wall Morphology Based on the Modeling of the Very-Large-Scale Motions[D]. Lanzhou: Lanzhou University, 2018. ]
[23] 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019,36(6):1419-1430.
[23] [ Zhao Jianhua, Zhang Feng, Liang Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019,36(6):1419-1430. ]
[24] Hong S Y. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006,134(9):2318-2341.
[25] Janji? Z I. The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review, 1994,122(5):927-945.
[26] Nakanishi M, Niino H. An improved Mellor-Yamada Level-3 Model: Its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006,119(2):397-407.
[27] Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005,117(2):231-257.
[28] Bougeault P, Lacarrre P. Parametrization of orography-induced turbulence in a meso-beta model[J]. Monthly Weather Review, 1989,117:1872-1890.
[29] Nabavi S O, Haimberger L, Samimi C. Sensitivity of WRF-chem predictions to dust source function specification in West Asia[J]. Aeolian Research, 2017,24:115-131.
[30] 隆霄, 赵建华, 黄建平. “07. 3”强沙尘暴天气过程的观测分析[J]. 兰州大学学报(自然科学版), 2012,48(1):69-74.
[30] [ Long Xiao, Zhao Jianhua, Huang Jianping. Observation and analysis of ‘07. 3’ severe sandstorm[J]. Journal of Lanzhou University (Natural Sciences), 2012,48(1):69-74. ]
[31] 魏倩, 隆霄, 田畅, 等. 民勤一次沙尘暴天气过程的近地层气象要素多尺度特征[J]. 干旱区研究, 2018,35(6):1352-1362.
[31] [ Wei Qian, Long Xiao, Tian Chang, et al. Multiscale meteorological characteristics during a sandstorm in Minqin[J]. Arid Zone Research, 2018,35(6):1352-1362. ]
[32] 魏倩. 一次沙尘天气过程发展演变的多尺度特征研究[D]. 兰州: 兰州大学, 2020.
[32] [ Wei Qian. Studies on Multiscale Characteristics during the Evolution of A Dust Event[D]. Lanzhou: Lanzhou University, 2020. ]
文章导航

/