天气与气候

新疆夏季行星边界层参数化方案模拟特征研究

展开
  • 中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
张海亮(1978-),男,硕士研究生,主要从事数值预报、陆气耦合、边界层研究. E-mail: zhanghl@idm.cn

收稿日期: 2020-03-10

  修回日期: 2020-06-04

  网络出版日期: 2021-03-05

基金资助

中国沙漠气象科学研究基金(Sqj2018017);国家自然科学基金青年科学基金项目(41801019)

Simulation characteristics of planetary boundary layer parameterizations: A case study in Xinjiang during summer

Expand
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China

Received date: 2020-03-10

  Revised date: 2020-06-04

  Online published: 2021-03-05

摘要

行星边界层参数化方案(PBL)对天气气候和大气环境的模拟与预报具有重要影响。通过基于单柱模式(SCM)的乌鲁木齐单点理想实验,以及新疆2019年8月15—18日的一次降水天气过程的模拟检验及诊断分析,研究了YSU、ACM2、BOULAC、GBM、MYJ和QNSE 6种常用的PBL参数化方案模拟的大气比湿、位温等气象要素响应土壤湿度变化的特征。结果表明:土壤湿度增加时,使用不同PBL参数化方案模拟的低层大气都呈现出比湿增加、位温降低、边界层高度降低的显著特征;GBM、ACM2中,垂直水汽输送效率较低,大气比湿较低、位温较高、湍涡作用范围较大,降水偏漏报;QNSE、MYJ中,垂直水汽输送效率较高,大气比湿较高、位温较低,湍涡作用范围较小,降水偏空报;QNSE、MYJ模拟的2 m比湿最大;ACM2模拟的2 m比湿最小;夜间QNSE模拟的2 m温度最低;白天MYJ模拟的2 m温度最高;QNSE、MYJ模拟的10 m风速最高。这些模拟特征与PBL方案水汽垂直输送效率的差异密切相关。

本文引用格式

张海亮,李火青,买买提艾力·买买提依明 . 新疆夏季行星边界层参数化方案模拟特征研究[J]. 干旱区研究, 2021 , 38(1) : 154 -162 . DOI: 10.13866/j.azr.2021.01.17

Abstract

Planetary boundary layer (PBL) parameterization has significant impacts on the simulation and prediction of climate, weather, and environmental air quality. Here, ideal experiments were conducted using the single-column model to study the response characteristics of specific humidity and potential temperatures on soil moisture under different PBL parameterizations. A heavy precipitation synoptic process in Xinjiang from 15th-18th August 2019 was simulated and verified with six PBL parameterizations, including YSU, ACM2, BOULAC, GBM, MYJ, and QNSE. As the soil moisture increases, the simulated atmospheric boundary layer presents significant characteristics, namely, increasing specific humidity, decreasing potential temperatures, and decreasing boundary layer height. In GBM and ACM2 cases, the vertical water vapor transport efficiency was low, atmospheric specific humidity was also low, the potential temperature was high, eddy action scope was large, and precipitation was underestimated. In QNSE and MYJ cases, the vertical water vapor transport efficiency was high, atmospheric specific humidity was high, the potential temperature was low, eddy action scope was small, and precipitation was overestimated. The maximum 2 m specific humidity was achieved using QNSE and MYJ, while the minimum 2 m specific humidity was by ACM2. The lowest 2 m temperature was achieved at nighttime using QNSE, while the highest 2 m temperature was at daytime using MYJ. The highest 10 m wind speed was achieved using QNSE and MYJ. These simulating characters are closely related to the differences in the vertical water vapor transport efficiency of the different PBL parameterizations.

参考文献

[1] Stull R B. An Introduction to Boundary Layer Meteorology[M]. Netherlands: Springer, 1988.
[2] Smith R K, Thomsen G L. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model[J]. Quarterly Journal of the Royal Meteorological Society, 2010,136(652):1671-1685.
[3] Shin H H, Hong S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011,139(2):261-281.
[4] Cheng F Y, Chin S C, Liu T H. The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area[J]. Atmospheric Environment, 2012,54(7):714-727.
[5] Xie B, Fung J C H, Chan A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. Journal of Geophysical Research Atmospheres, 2012,117(D12).
[6] Huang W, Shen X, Wang W, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(4):543-562.
[7] Cohen A E, Cavallo S M, Coniglio M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern US cold season severe weather environmens[J]. Weather and Forecasting, 2015,30(3):591-612.
[8] 王建捷, 周斌, 郭肖容. 不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响[J]. 气象学报, 2005,63(4):405-417.
[8] [ Wang Jianjie, Zhou bin, Guo Xiaorong. Numerical study on characteristics of condensational heating rates and their impacts on mesoscale structure of torrential rain simulation[J]. Acta Meteorologica Sinica, 2005,63(4):405-417. ]
[9] 孙建华, 赵思雄. 一次罕见的华南大暴雨过程的诊断与数值模拟研究[J]. 大气科学, 2000,24(3):381-392.
[9] [ Sun Jianhua, Zhao Sixiong. A diagnosis and simulation study of a strong heavy rainfall in south China[J]. Chinese Journal of Atmospheric Sciences, 2000,24(3):381-392. ]
[10] 陈静, 薛纪善, 颜宏. 物理过程参数化方案对中尺度暴雨数值模拟影响的研究[J]. 气象学报, 2003,61(2):203-218.
[10] [ Chen Jing, Xue Jishan, Yan Hong. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation[J]. Acta Meteorologica Sinica, 2003,61(2):203-218. ]
[11] 孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018,38(3):11-19.
[11] [ Sun Wenqi, Li Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018,38(3):11-19. ]
[12] Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005,117(2):231-257.
[13] Gibbs J A, Fedorovich E. Comparison of convective boundary layer velocity spectra retrieved from large-eddy-simulation and Weather Research and Forecasting model data[J]. Journal of Applied Meteorology and Climatology, 2014,53(2):77-394.
[14] LeMone M A, Tewari M, Chen F, et al. Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations[J]. Monthly Weather Review, 2013,141(1):30-54.
[15] Banks R F, Tiana-Alsina J, Baldasano, J M, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176-177:185-201.
[16] 张小培, 银燕. 复杂地形地区WRF模式四种边界层参数化方案的评估[J]. 大气科学学报, 2013,36(1):68-76.
[16] [ Zhang Xiaopei, Yin Yan. Evaluation of the four PBL schemes in WRF model over complex topographic areas[J]. Transactions of Atmospheric Sciences, 2013,36(1):68-76. ]
[17] 王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010,29(6):1397-1407.
[17] [ Wang Ying, Zhang Lei, Hu Ju, et al. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain[J]. Plateau Meteorology, 2010,29(6):1397-1407. ]
[18] 陈淑莹, 胡琪, 张弛, 等. WRF模式在天山地区模拟能力的敏感性评估[J]. 干旱区研究, 2019,36(1):196-206.
[18] [ Chen Shuying, Hu Qi, Zhang Chi, et al. Evaluation on the sensitivity of WRF model in the Tianshan Mountains[J]. Arid Zone Research, 2019,36(1):196-206. ]
[19] 黄文彦, 沈新勇, 王卫国, 等. 边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014,57(5):1399-1414.
[19] [ Huang Wenyan, Shen Xinyong, Wang Weiguo, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(5):1399-1414. ]
[20] Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology & Climatology, 2010,49(9):1831-1844.
[21] Wang W, Shen X, Huang W. A comparison of boundary-layer characteristics simulated using different parametrization schemes[J]. Boundary-Layer Meteorology, 2016,161(2):375-403.
[22] Cuxart J, Holtslag A A M, Beare R J, et al. Single-column model intercomparison for a stably stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2006,118(2):273-303.
[23] Ayotte K W, Sullivan P P, Anders Andrén, et al. An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations[J]. Boundary-Layer Meteorology, 1996,79(1-2):131-175.
[24] Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing[J]. Journal of Applied Meteorology & Climatology, 2007,46(9):1383-1395.
[25] Angevine W M, Jiang H, Mauritsen T. Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers[J]. Monthly Weather Review, 2010,138(7):2895-2912.
[26] 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019,36(6):1419-1430.
[26] [ Zhao Jianhua, Zhang Feng, Liang Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019,36(6):1419-1430. ]
[27] Zhang H, Liu J, Li H, et al. The impacts of soil moisture initialization on the forecasts of Weather Research and Forecasting model: A case study in Xinjiang, China[J]. Water, 2020,12(7):1892.
文章导航

/