稳定碳同位素技术在土壤有机碳研究中的应用进展
收稿日期: 2020-06-02
修回日期: 2020-07-26
网络出版日期: 2021-03-05
基金资助
宁夏自然科学基金课题(NZ17040);宁夏重点研发计划项目(2018BFG02015);国家自然科学基金(31960359);宁夏高等学校一流学科建设(生态学)资助项目(NXYLXK2017B06)
Application of stable carbon isotope technique in soil organic carbon research: A literature review
Received date: 2020-06-02
Revised date: 2020-07-26
Online published: 2021-03-05
土壤碳周转是大气圈、生物圈与岩石圈之间碳迁移转化的重要过程,其微小变化将影响大气CO2浓度,改变植物地上与地下部分碳的动态与分配。目前稳定碳同位素技术广泛应用于不同时间尺度与空间尺度碳素生物地球化学循环研究,但缺乏针对稳定碳同位素技术应用于土壤有机碳研究的概述。本文在对当前利用稳定碳同位素技术研究土壤碳起源、动态变化以及周转等资料整理的基础上,简要总结陆地生态系统植物叶片-凋落物-土壤连续体、叶片-土壤连续体和土壤中稳定碳同位素(δ13C)变化规律。重点介绍了土壤碳素循环的主要影响因素及其适应规律,同时对比13C自然与13C人工标记法的异同,指出利用稳定碳同位素方法研究土壤碳动态过程中应加强的方面和未来的重点研究方向及趋势。明确上述过程及机制可为预测生态系统的源/汇效应奠定基础,加强对陆地生态系统碳循环定量研究,将对土壤碳源/汇潜力的了解和土壤有机碳周转机理的深入了解有所裨益。
刘丽贞,庞丹波,王新云,陈林,李学斌,吴梦瑶,刘波,祝忠有,李静尧,王继飞 . 稳定碳同位素技术在土壤有机碳研究中的应用进展[J]. 干旱区研究, 2021 , 38(1) : 123 -132 . DOI: 10.13866/j.azr.2021.01.14
Soil carbon turnover is an important part of carbon transfer between the atmosphere, biosphere, and lithosphere. Even small changes in the soil carbon pool could affect the atmospheric CO2 concentration and dynamic carbon above and underground. Stable carbon isotope technology is currently used widely in carbon biogeochemical cycle research at different time and space scales. However, there is a lack of integration of this technology with soil carbon turnover research. This literature review examined numerous studies on the application of stable carbon isotope technology to soil carbon origin, turnover, and dynamic changes. It also analyzed stable carbon isotope (δ13C) variations in the leaf-litter-soil leaf-soil continuums, and terrestrial ecosystems; focusing on (1) the characteristics of stable carbon isotope technology in the soil carbon cycle, (2) the main factors influencing the cycle, (3) the adaptive rules of soil carbon cycle turnover, (4) the similarities and differences between natural and artificial13C labeling methods, and (5) the aspects of future research integration that should be emphasized. This review could elucidate the role of soil carbon sources and sinks in terrestrial ecosystems and soil organic carbon turnover mechanisms and processes.
Key words: stable carbon isotope; δ13C; soil organic carbon; Δδ13C; influence factors
[1] | 欧阳婷萍, 张金兰, 曾敬, 等. 土地利用变化的土壤碳效应研究进展[J]. 热带地理, 2008,28(3):203-208. |
[1] | [ Ouyang Tingping, Zhang Jinlan, Zeng Jing, et al. Advances in the study of soil carbon effect of land-use change[J]. Tropical Geography, 2008,28(3):203-208. ] |
[2] | 陶波, 葛全胜, 李克让, 等. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001,20(5):564-575. |
[2] | [ Tao Bo, Ge Quansheng, Li Kerang, et al. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographicl Research, 2001,20(5):564-575. ] |
[3] | 李涵诗, 毛艳玲, 邹双全. δ13C标记林木残体碳在土壤团聚体中的分布[J]. 土壤学报, 2017,54(4):1038-1046. |
[3] | [ Li Hanshi, Mao Yanling, Zou Shuangquan. Distribution of δ13C-labeled wood residue carbon in soil aggregates[J]. Acta Pedologica Sinica, 2017,54(4):1038-1046. ] |
[4] | Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004,304(5677):1623-1627. |
[5] | Lin G, Ehleringer J R, Rygiewicz P T, et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms[J]. Global Change Biology, 1999,5(2):157-168. |
[6] | 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000,24(5):518-522. |
[6] | [ Zhou Yurong, Yu Zhenliang, Zhao Shidong. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000,24(5):518-522. ] |
[7] | 潘根兴, 曹建华, 周运超. 土壤碳及其在地球表层系统碳循环中的意义[J]. 第四纪研究, 2000,20(4):325-334. |
[7] | [ Pan Genxing, Cao Jianhua, Zhou Yunchao. Soil carbon and its significance in carbon cycling of earth surface system[J]. Quaternary Sciences, 2000,20(4):325-334. ] |
[8] | Smith P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016,22(3):1315-1324. |
[9] | 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 10-35. |
[9] | [ Lin Guanghui. Stable Isotope Ecology[M]. Beijing: Higher Education Press, 2013: 10-35. ] |
[10] | 周晓宇, 张称意, 郭广芬. 气候变化对森林土壤有机碳贮藏影响的研究进展[J]. 应用生态学报, 2010,21(7):1867-1874. |
[10] | [ Zhou Xiaoyu, Zhang Chengyi, Guo Guangfen. Effects of climate change on forest soil organic carbon storage: A review[J]. Chinese Journal of Applied Ecology, 2010,21(7):1867-1874. ] |
[11] | Rumpel C, Amiraslani F, Koutika L S, et al. Put more carbon in soils to meet Paris climate pledges[J]. Nature, 2018,564(7734):32-34. |
[12] | Zhou G Y, Xu S, Ciais P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 2019,6(4):746-757. |
[13] | Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, (47):151-163. |
[14] | Lal R. Soil carbon management and climate change[J]. Carbon Management, 2013,4(4):439-462. |
[15] | 徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007,31(2):175-188. |
[15] | [ Xu Xiaofeng, Tian Hanqin, Wan Shiqiang. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007,31(2):175-188. ] |
[16] | Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 1958,13(4):322-334. |
[17] | 朱书法, 刘丛强, 陶发祥. δ13C方法在土壤有机质研究中的应用[J]. 土壤学报, 2005,42(3):495-503. |
[17] | [ Zhu Shufa, Liu Congqiang, Tao Faxiang. Use of δ13C method in studying soil organic matter[J]. Acta Pedologica Sinica, 2005,42(3):495-503. ] |
[18] | Mckinney C R, Mccrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J]. Review of Scientific Instruments, 1950,21(8):724-730. |
[19] | Amelung W, Brodowski S, Sandhage-Hofmann A, et al. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter[J]. Advances in Agronomy, 2008,100:155-250. |
[20] | Bowling D R, Pataki D E, Randerson J T. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes[J]. New Phytologist, 2008,178(1):24-40. |
[21] | Yakir D, Leonel D S L S. The use of stable isotopes to study ecosystem gas exchange[J]. Oecologia, 2000,123(3):297-311. |
[22] | Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate[J]. PANS, 2010,107(46):19691-19695. |
[23] | 刘微, 吕豪豪, 陈英旭, 等. 稳定碳同位素技术在土壤-植物系统碳循环中的应用[J]. 应用生态学报, 2008,19(3):674-680. |
[23] | [ Liu Wei, Lyu Haohao, Chen Yingxu, et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system[J]. Chinese Journal of Applied Ecology, 2008,19(3):674-680. ] |
[24] | Cloern J E, Canuel E A, Harris D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system[J]. Limnology and Oceanography, 2002,47(3):713-729. |
[25] | Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle processes[J]. Ecological Applications, 2000,10(2):412-422. |
[26] | Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000,32(14):2099-2103. |
[27] | Tu C L, Liu C Q, Quine T A, et al. Dynamics of soil organic carbon following land-use change: Insights from stable C-isotope analysis in black soil of Northeast China[J]. Acta Geochimica, 2018,37(5):746-757. |
[28] | 陈世苹, 白永飞, 韩兴国. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报, 2002,26(5):549-560. |
[28] | [ Chen Shiping, Bai Yongfei, Han Xingguo. Applications of stable carbon isotope techniques to ecological research[J]. Acta Phytoecologica Sinica, 2002,26(5):549-560. ] |
[29] | 郑兴波, 张岩, 顾广虹. 碳同位素技术在森林生态系统碳循环研究中的应用[J]. 生态学杂志, 2005,24(11):84-88. |
[29] | [ Zheng Xingbo, Zhang Yan, Gu Guanghong. Application of carbon isotope technique in forest ecosystem carbon cycling research[J]. Chinese Journal of Ecology, 2005,24(11):84-88. ] |
[30] | Epron D, Bahn M, Derrien D, et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects[J]. Tree Physiology, 2012,32(6):776-798. |
[31] | 周咏春, 张文博, 程希雷, 等. 植物及土壤碳同位素组成对环境变化响应研究进展[J]. 环境科学研究, 2019,32(4):565-572. |
[31] | [ Zhou Yongchun, Zhang Wenbo, Cheng Xilei, et al. A review on the responses of plant and soil carbon stable isotope composition to environmental change[J]. Research of Environmental Sciences, 2019,32(4):565-572. ] |
[32] | Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006,440(7081):165-173. |
[33] | Liu X, Su Q, Li C, et al. Responses of carbon isotope ratios of C3 herbs to humidity index in northern China[J]. Turkish Journal of Earth Sciences, 2014,23:100-111. |
[34] | Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404(6780):858-861. |
[35] | Jia Y F, Wang G A, Tan Q Q, et al. Temperature exerted no influence on the organic carbon isotope of surface soil along the isopleth of 400 mm mean annual precipitation in China[J]. Biogeosciences Discussions, 2016: 1-31. doi: 10.5194/bg-2015-624. |
[36] | Feng Z D, Wang L X, Ji Y H, et al. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34°N to 52°N in central-east Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,257(3):335-343. |
[37] | Cheng X, Luo Y, Xu X, et al. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming[J]. Biogeosciences, 2011,8(6):1487-1498. |
[38] | Lu H Y, Wu N Q, Gu Z A, et al. Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau[J]. Biogeochemistry, 2004,70:273-297. |
[39] | 耿元波, 王子腾, 李茹霞. δ13C值在羊草草原植物体中的差异和变化及其影响因素分析[J]. 草地学报, 2019,27(1):153-162. |
[39] | [ Geng Yuanbo, Wang Ziteng, Li Ruxia. Analysis of differences and influencing factors of plant δ13C in Leymus chinensis grassland in Inner-Mongolia, China[J]. Acta Agrestia Sinica, 2019,27(1):153-162. ] |
[40] | Houghton R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biology, 2005,11(6):945-958. |
[41] | Gao Y, Zhou J, Wang L M, et al. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China[J]. Global Ecology and Conservation, 2019,17:e00575. |
[42] | Zhao Y F, Wang X, Ou Y S, et al. Variations in soil δ13C with alpine meadow degradation on the eastern Qinghai-Tibet Plateau[J]. Geoderma, 2019,338:178-186. |
[43] | Deng L, Liu G B, Shangguan Z P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synjournal[J]. Global Change Biology, 2014,20(11):3544-3556. |
[44] | Peri P L, Ladd B, Pepper D A, et al. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests[J]. Global Change Biology, 2012,18(1):311-321. |
[45] | Xu X, Shi Z, Li D J, et al. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis[J]. Geoderma, 2016,262:235-242. |
[46] | An H, Li Q L, Yan X, et al. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, Northwest China[J], Ecological Engineering, 2019,127:348-355. |
[47] | Acton P, Fox J, Campbell E, et al. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils[J]. Journal of Geophysical Research: Biogeosciences, 2013,118(4):1532-1545. |
[48] | Campbell J E, Fox J F, Davis C M, et al. Carbon and nitrogen isotopic measurements from southern Appalachian soils: Assessing soil carbon sequestration under climate and land-use variation[J]. Journal of Environmental Engineering, 2009,135(6):439-448. |
[49] | Richards A E, Dalal R C, Schmidt S. Soil carbon turnover and sequestration in native subtropical tree plantations[J]. Soil Biology and Biochemistry, 2007,39(8):2078-2090. |
[50] | Guillaume T, Damris M, Kuzyakov Y. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ13C[J]. Global Change Biology, 2015,21(9):3548-3560. |
[51] | Desjardins T, Andreux F, Volkoff B, et al. Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia[J]. Geoderma, 1994,61(1):103-118. |
[52] | Schwendenmann L, Pendall E. Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: Evidence from soil carbon fractionation and stable isotopes[J]. Plant and Soil, 2006,288(1-2):217-232. |
[53] | Wynn J, Bird M, Wong V. Rayleigh distillation and the depth profile of 13C/12C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia[J]. Geochimica et Cosmochimica Acta, 2005,69(8):1961-1973. |
[54] | Brunn M, Condron L, Wells A, et al. Vertical distribution of carbon and nitrogen stable isotope ratios in topsoils across a temperate rainforest dune chronosequence in New Zealand[J]. Biogeochemistry, 2016,129(1-2):37-51. |
[55] | Mosquera O, Buurman P, Ramirez B L, et al. Carbon replacement and stability changes in short-term silvo-pastoral experiments in Colombian Amazonia[J]. Geoderma, 2012,170:56-63. |
[56] | Powers J S, Schlesinger W H. Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica[J]. Geoderma, 2002,109(1):141-160. |
[57] | Li D J, Niu S L, Luo Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis[J]. New Phytologist, 2012,195(1):172-181. |
[58] | 何春霞, 李吉跃, 张燕香, 等. 5种绿化树种叶片比叶重、光合色素含量和δ13C的开度与方位差异[J]. 植物生态学报, 2010,34(2):134-143. |
[58] | [ He Chunxia, Li Jiyue, Zhang Yanxiang, et al. Differences in leaf mass per area, photosynthetic pigments and δ13C by orientation and crown position in five greening tree species[J]. Chinese Journal of Plant Ecology, 2010,34(2):134-143. ] |
[59] | 熊鑫, 张慧玲, 吴建平, 等. 鼎湖山森林演替序列植物-土壤碳氮同位素特征[J]. 植物生态学报, 2016,40(6):533-542. |
[59] | [ Xiong Xin, Zhang Huiling, Wu Jianping, et al. 13C and 15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan Biosphere Reserve[J]. Chinese Journal of Plant Ecology, 2016,40(6):533-542. ] |
[60] | 吴健, 沙晨燕, 王敏, 等. 典型滨岸草地生态系统碳稳定同位素组成及分布特征[J]. 应用生态学报, 2017,28(7):2231-2238. |
[60] | [ Wu Jian, Sha Chenyan, Wang Min, et al. Composition and distribution characteristics of stable carbon isotope in typical riparian grassland ecosystem[J]. Chinese Journal of Applied Ecology, 2017,28(7):2231-2238. ] |
[61] | 綦琳. 青藏高原东缘表土有机碳同位素分布特征及其主控因素研究[D]. 北京: 中国地质大学, 2017. |
[61] | [ Qi Lin. Distribution of Organic Carbon Isotope Composition for Mordern Soils form the Eastern Marfin of the Tibetan Plateau and its Main Controlling Factors[D]. Beijing: China University of Geosciences, 2017. ] |
[62] | Garten Jr. C T, Cooper L W, Post III W M, et al. Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains[J]. Ecology, 2000,81(4):1108-1119. |
[63] | Shtangeeva I, Bu?a L, Viksna A. Carbon and nitrogen stable isotope ratios of soils and grasses as indicators of soil characteristics and biological taxa[J]. Applied Geochemistry, 2019,104:19-24. |
[64] | Deng L, Wang K, Tang Z, et al. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ13C)[J]. Agriculture Ecosystems & Environment, 2016,221:235-244. |
[65] | Wang S Q, Fan J W, Song M H, et al. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau[J]. Plant and Soil, 2013,363(1-2):243-255. |
[66] | Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ13C along a moisture gradient in Botswana[J]. Global Change Biology, 2004, (10):342-349. |
[67] | Wang C, Houlton B Z, Liu D W, et al. Stable isotopic constraints on global soil organic carbon turnover[J]. Biogeosciences, 2018, (15):987-995. |
[68] | Michelsen A, Jonasson S, Sleep D, et al. Shoot biomass, δ13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change[J]. Oecologia, 1996,105(1):1-12. |
[69] | Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 2006,38(3):425-448. |
[70] | 刘琦. 黄土丘陵区不同土地利用土壤呼吸及其碳来源研究[D]. 西安: 西安理工大学, 2018. |
[70] | [ Liu Qi. The Soil Respiration and its Carbon Source under Different Land Use Conditions in Loess Hilly Region[D]. Xi’an: Xi’an University of Technology, 2018. ] |
[71] | 刘哲, 韩霁昌, 孙增慧, 等. δ13C法研究砂姜黑土添加秸秆后团聚体有机碳变化规律[J]. 农业工程学报, 2017,33(14):179-187. |
[71] | [ Liu Zhe, Han Jichang, Sun Zenghui, et al. Change law of organic carbon in lime concretion black soil aggregates with application of straw by δ13C method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(14):179-187. ] |
[72] | 涂成龙, 刘丛强, 武永锋. 应用δ13C值探讨林地土壤有机碳的分异[J]. 北京林业大学学报, 2008,30(5):1-6. |
[72] | [ Tu Chenglong, Liu Congqiang, Wu Yongfeng. Discussing variance of forest soil organic carbon by analysis of δ13C[J]. Journal of Beijing Forestry University, 2008,30(5):1-6. ] |
[73] | 尹云锋, 蔡祖聪. 利用δ13C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率[J]. 土壤学报, 2007,44(6):1022-1027. |
[73] | [ Yin Yunfeng, Cai Zucong. Decmposition rates of organic carbon in whole soil and heavy fraction of red soil incorporated with maize stalks using carbon-13 natural abundance[J]. Acta Pedologica Sinica, 2007,44(6):1022-1027. ] |
[74] | Bai E, Boutton T W, Liu F, et al. Spatial patterns of soil δ13C reveal grassland-to-woodland successional processes[J]. OrganicGeochemistry, 2012,42(12):1512-1518. |
[75] | Liu C, Dong Y T, Li Z W, et al. Tracing the source of sedimentary organic carbon in the Loess Plateau of China: An integrated elemental ratio, stable carbon signatures, and radioactive isotopes approach[J]. Journal of Environmental Radioactivity, 2016,167:201-210. |
[76] | 吴英. 大针茅草原放牧退化过程中土壤有机碳组分及其来源研究[D]. 呼和浩特: 内蒙古大学, 2017. |
[76] | [ Wu Ying. Study on Fractions of Soil Organic Carbon and its Sources during Grazing Degradation of Stipa Grandis[D]. Hohhot: Inner Mongolia University, 2017. ] |
[77] | Longdoz B, Yernaux M, Aubinet M. Soil CO2 efflux measurements in a mixed forest: Impact of chamber disturbances, spatial variability and seasonal evolution[J]. Global Change Biology, 2000,6(8):907-917. |
[78] | Mcdowell W H, Magill A H, Aitkenhead-Peterson J A, et al. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution[J]. Forest Ecology and Management, 2004,196(1):29-41. |
[79] | Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations[J]. Biogeochemistry, 2000,48(1):115-146. |
[80] | Knohl A, Buchmann N. Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopes[J]. Global Biogeochemical Cycles, 2005,19(4):1-14. |
[81] | 赵云飞, 汪霞, 欧延升, 等. 若尔盖草甸退化对土壤碳、氮和碳稳定同位素的影响[J]. 应用生态学报, 2018,29(5):1405-1411. |
[81] | [ Zhao Yunfei, Wang Xia, Ou Yansheng, et al. Effects of alpine meadow degradation on soil carbon, nitrogen, and carbon stable isotope in Zoige Plateau[J]. Chinese Journal of Applied Ecology, 2018,29(5):1405-1411. ] |
[82] | Garten Jr C T. Relationships among forest soil C isotopic composition, partitioning, and turnover times[J]. Canadian Journal of Forest Research, 2006,36(9):2157-2167. |
[83] | Bernoux M, Cerri C C, Neill C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates[J]. Geoderma, 1998,82(1):43-58. |
[84] | Maricle B R, Zwenger S R, Lee R W. Carbon, nitrogen, and hydrogen isotope ratios in creekside trees in western Kansas[J]. Environmental and Experimental Botany, 2011,71(1):1-9. |
[85] | Canadell J G, Kirschbaum M U, Kurz W A, et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks[J]. Environmental Science & Policy, 2007,10(4):370-384. |
[86] | 刘贤赵, 宿庆, 李嘉竹, 等. 控温条件下C3、C4草本植物碳同位素组成对温度的响应[J]. 生态学报, 2015,35(10):3278-3287. |
[86] | [ Liu Xianzhao, Su Qing, Li Jiazhu, et al. Responses of carbon isotopic composition of C3 and C4 herbaceous plants to temperature under controlled temperature conditions[J]. Acta Ecologica Sinica, 2015,35(10):3278-3287. ] |
[87] | 何春霞, 李吉跃, 孟平, 等. 树木叶片稳定碳同位素分馏对环境梯度的响应[J]. 生态学报, 2010,30(14):3828-3838. |
[87] | [ He Chunxia, Li Jiyue, Meng Ping, et al. Changes in leaf stable carbon isotope fractionation of trees across climatic gradients[J]. Acta Ecologica Sinica, 2010,30(14):3828-3838. ] |
[88] | 喻阳华, 程雯, 杨丹丽, 等. 黔西北次生林优势树种叶片-凋落物-土壤连续体有机质碳稳定同位素特征[J]. 生态学报, 2018,38(24):8733-8740. |
[88] | [ Yu Yanghua, Cheng Wen, Yang Danli, et al. Carbon stable isotopic characteristics of organic matter in the leaf-litter-soil continuum of dominant tree species in a secondary forest in northwestern Guizhou[J]. Acta Ecologica Sinica, 2018,38(24):8733-8740. ] |
[89] | 司高月, 李晓玉, 程淑兰, 等. 长白山垂直带森林叶片-凋落物-土壤连续体有机碳动态——基于稳定性碳同位素分析[J]. 生态学报, 2017,37(16):5285-5293. |
[89] | [ Si Gaoyue, Li Xiaoyu, Cheng Shulan, et al. Organic carbon dynamics of the leaf-litter-soil continuum in the typical forests of the Changbai Mountain transect: An analysis of stable carbon isotope technology[J]. Acta Ecologica Sinica, 2017,37(16):5285-5293. ] |
[90] | Butler J L, Bottomley P J, Griffith S M, et al. Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres[J]. Soil Biology and Biochemistry, 2004,36(2):371-382. |
[91] | Wu Y B, Tan H C, Deng Y C, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling[J]. Global Change Biology, 2010,16(8):2322-2333. |
[92] | Johnson D, Leake J R, Ostle N, et al. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil[J]. New Phytologist, 2002,153:327-334. |
[93] | Butterly C R, Armstrong R, Chen D, et al. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2[J]. Plant and Soil, 2015,391(1-2):367-382. |
[94] | 马田, 刘肖, 李骏, 等. CO2浓度升高对土壤-植物(春小麦)系统光合碳分配和积累的影响[J]. 核农学报, 2014,28(12):2238-2246. |
[94] | [ Ma Tian, Liu Xiao, Li Jun, et al. Effects of elevated atmospheric CO2 on the distribution and accumulation of photosynthetic carbon in soil-plant (Spring Wheat) system[J]. Journal of Nuclear Agricultural Sciences, 2014,28(12):2238-2246. ] |
[95] | 李新乐, 鲍芳, 吴波, 等. 荒漠植物白刺新固定碳在植物-土壤系统中的分配[J]. 草业学报, 2019,28(2):33-40. |
[95] | [ Li Xinle, Bao Fang, Wu Bo, et al. Distribution of newly fixed carbon of nitraria tangutorumin the plant-soil system[J]. Acta Prataculturae Sinica. 2019,28(2):33-40. ] |
[96] | Crawford M C, Grace P R, Oades J M. Allocation of carbon to shoots, roots, soil and rhizosphere respiration by barrel medic (Medicago truncatula) before and after defoliation[J]. Plant and Soil, 2000,227(1-2):67-75. |
/
〈 | 〉 |