AIRS辐射亮温在中亚地区的偏差分析及适用性
收稿日期: 2020-03-30
修回日期: 2020-07-16
网络出版日期: 2021-03-05
基金资助
国家自然科学基金(41805075);国家自然科学基金(41875023);国家重点研发计划项目(2018YFC1507105)
Bias analysis and applicability evaluation of the atmospheric infrared sounder (AIRS) radiance in Central Asia
Received date: 2020-03-30
Revised date: 2020-07-16
Online published: 2021-03-05
中亚地区常规观测站点稀少,需借助星载高光谱AIRS资料分析出该地区数值预报最优初始场。以CRTM中输入探空模拟出的AIRS辐射亮温为参考值,分析了AIRS观测亮温偏差,并评估了 AIRS卫星资料在中亚数值天气预报业务系统中的适用性。结果表明:(1) 各通道模拟所选站点上空亮温最大正偏差的平均值约为3.3 K,最大负偏差的绝对值约为2.6 K。(2) 多个站点平均的AIRS观测辐射亮温整体略高于模拟亮温,其概率密度分布比单个站点更加接近正态分布曲线。(3) AIRS的同化改善了RMAPS-CA对位势高度、温度、比湿等高空要素的预报效果,并未改善高空风速的预报。对各个要素,AIRS的同化改善幅度在低层较高层大。同化后,位势高度、温度、比湿和风速的预报RMSE分别小于20 gpm、2 K、8×10-4 kg·kg-1以及5 m·s-1。
马玉芬,李如琦,张萌,买买提艾力·买买提依明,张广兴 . AIRS辐射亮温在中亚地区的偏差分析及适用性[J]. 干旱区研究, 2021 , 38(1) : 12 -21 . DOI: 10.13866/j.azr.2021.01.02
Due to a scarcity of observation sites, only a small amount of conventional observation data on the temporal and spatial distribution of temperature and humidity in Central Asia can be obtained, which makes analysis difficult. High-resolution air infrared detector (AIRS) data can effectively fill the gap. In this paper, the radiance temperature of AIRS simulated by the input radiosonde in the Community Radiative Transfer Model was utilized as the reference value, deviations in the brightness temperature of the AIRS observation were analyzed, and the applicability of AIRS satellite data in the Central Asia numerical weather forecast operation system was evaluated. First, it shows that the average value of the maximum positive deviation of brightness temperature over the selected stations was approximately 3.3 K, and the absolute value of the maximum negative deviation was approximately 2.6 K. Second, the average brightness temperature of the AIRS observation in multiple stations was slightly higher than the overall simulated brightness temperature, and its probability density distribution was closer to the normal distribution curve than that of a single station. Finally, the assimilation of AIRS improved the prediction effect of RMAPS-CA on the geopotential height, temperature, specific humidity, and other high-altitude elements, but did not improve the prediction of high-altitude wind speed. For each factor, the assimilation improvement range of AIRS was larger at the lower and higher levels. After assimilation, the root mean square error of the geopotential height, temperature, specific humidity, and wind speed were less than 20 gpm, 2 K, 8×10-4 kg·kg-1 and 5 m·s-1, respectively. It should be noted that, due to the time limitations imposed on the encrypted sounding experiment, only one full month in July 2016 was selected as the research time period in the deviation analysis of this study. Due to the relatively less vegetation coverage on the underlying surface in Central Asia, the surface radiation was large in summer, while the area without snow cover in winter was relatively small. Therefore, the conclusion of the deviation analysis in this paper is not necessarily applicable to other seasons. In addition, considering the possibility of a business transformation of the research results, this study was based on Rapid-Refresh Multiscale Analysis and Prediction System-Central Asia (RMAPS-CA) to carry out assimilation analysis when evaluating the applicability of AIRS. The system uses the three-dimensional variational data assimilation (3DVAR) method. If a more advanced four-dimensional variational data assimilation (4DVAR) assimilation method is adopted, the assimilation effect may improve.
Key words: AIRS; Central Asia; radiative brightness temperature; bias analysis; applicability
[1] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011,41(11):1647-1657. |
[1] | [ Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Sciences, 2011,41(11):1647-1657. ] |
[2] | 盛承禹. 世界气候[M]. 北京: 气象出版社, 1988: 121-139. |
[2] | [ Sheng Chengyu. World Climate[M] Beijing: China Meteorological Press, 1988: 121-139. ] |
[3] | 程彦培, 张发旺, 董华, 等. 基于MODIS卫星数据的中亚地区水体动态监测研究[J]. 水文地质工程地质, 2010,37(5):33-37. |
[3] | [ Cheng Yanpei, Zhang Fawang, Dong Hua, et al. Wetland dynamic monitoring in Central Asia based on MODIS image[J]. Hydrogeology & Engineering Geology, 2010,37(5):33-37. ] |
[4] | 张雪芹, 李敏姣, 孙通. 大气红外探测器(AIRS)资料揭示的中亚地区上对流层水汽时空变化特征[J]. 干旱区研究, 2013,30(6):951-957. |
[4] | [ Zhang Xueqin, Li Minjiao, Sun Tong. Spatiotemporal variation of water vapor in upper troposphere over Central Asia based on AIRS satellite retrieval[J]. Arid Zone Research, 2013,30(6):951-957. ] |
[5] | 李江风. 塔克拉玛干沙漠和周边山区天气气候[M]. 北京: 科学出版社, 2003. |
[5] | [ Li Jiangfeng. Weather and Climate in Taklimakan Desert and Surrounding Mountainous Areas[M]. Beijing: Science Press, 2003. ] |
[6] | 普宗朝, 张山清, 李景林, 等. 近47 a塔克拉玛干沙漠周边地区气候变化[J]. 中国沙漠, 2010,30(2):413-421. |
[6] | [ Pu Zongchao, Zhang Shanqing, Li Jinglin, et al. Climate change around Taklimakan Desert in recent 47 years[J]. Journal of Desert Research, 2010,30(2):413-421. ] |
[7] | William L Smith, 吕月华. 卫星探测的大气资料对改进天气预报是渺茫的或是起关键作用[J]. 气象科技, 1992(4):7-17. |
[7] | [ William L Smith, Lyu Yuehua. The atmospheric data detected by satellites are of little or critical importance to the improvement of weather forecast[J]. Meteorological Science and Technology, 1992 (4):7-17. ] |
[8] | 吴雪宝, Paul Menzel, Allen Huang. 高光谱红外卫星资料反演大气和云参数[C]// 农业生态与卫星遥感应用技术学术交流会论文摘要集, 2006. |
[8] | [ Wu Xuebao, Paul Menzel, Allen Huang. Retrieval of atmospheric and cloud parameters from hyperspectral infrared satellite data[C]// Proceedings of the Symposium on Agricultural Ecology and Satellite Remote Sensing Application Technology, 2006. ] |
[9] | 董超华, 李俊, 张鹏. 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 2013. |
[9] | [ Dong Chaohua, Li Jun, Zhang Peng. Principle and Application of Satellite Hyperspectral Infrared Atmospheric Remote Sensing [M]. Beijing: Science Press, 2013. ] |
[10] | 马玉芬, 李曼, 史莲梅. 单个掩星事件湿度场资料同化实验[J]. 干旱区研究, 2013,30(6):1113-1121. |
[10] | [ Ma Yufen, Li Man, Shi Lianmei. Data assimilation experiment of humidity field of single occultation event[J]. Arid Zone Research, 2013,30(6):1113-1121. ] |
[11] | Aumann H H, Chahine M T. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(2):253-264. |
[12] | Mcnally A P, Watts P D, Smith J A, et al. The assimilation of AIRS radiance data at ECMWF[J]. Quarterly Journal of the Royal Meteorological Society, 2006,132(616):935-957. |
[13] | 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017,32(2):139-150. |
[13] | [ Wang Gen, Zhang Hua, Yang Yin. Research progress of air data quality control of hyperspectral atmospheric infrared detector[J]. Progress in Earth Science, 2017,32(2):139-150. ] |
[14] | Dee D P. Bias and data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2005,131(613):3323-3343. |
[15] | 张华, 薛纪善, 庄世宇, 等. GRAPeS三维变分同化系统的理想试验[J]. 气象学报, 2004,62(1):31-41. |
[15] | [ Zhang Hua, Xue Jishan, Zhuang Shiyu, et al. Ideal experiment of three-dimensional variational assimilation system[J]. Acta Meteorologica Sinica, 2004,62(1):31-41. ] |
[16] | 杨凤娟, 亢燕铭, 刘琼, 等. 新疆地面太阳辐射及其CERES/SSF卫星资料适用性研究[J]. 干旱区研究, 2019,36(6):1401-1410. |
[16] | [ Yang Fengjuan, Kang Yanming, Liu Qiong, et al. Surface solar radiation in Xinjiang and the applicability of CERES/SSF satellite data[J]. Arid Zone Research, 2019,36(6):1401-1410. ] |
[17] | 朱国富, 薛纪善, 张华, 等. GRAPES变分同化系统中卫星辐射率资料的直接同化[J]. 科学通报, 2008,53(20):2421-2427. |
[17] | [ Zhu Guofu, Xue Jishan, Zhang Hua, et al. Direct assimilation of satellite emissivity data in variational assimilation system[J]. Scientific Bulletin, 2008,53(20):2421-2427. ] |
[18] | Banghua Yan J L M. JCSDA community radiative transfer model (CRTM)[J]. American Geophysical Union, 2005,122. |
[19] | 刘志权, 张凤英, 吴雪宝, 等. 区域极轨卫星ATOVS辐射偏差订正方法研究[J]. 气象学报, 2007,65(1):113-123. |
[19] | [ Liu Zhiquan, Zhang Fengying, Wu Xuebao, et al. Study on radiation bias correction method of regional polar orbiting satellite ATOVS[J]. Acta Meteorologica Sinica, 2007,65(1):113-123. ] |
[20] | 丁伟钰, 万齐林. “珍珠”台风卫星红外通道亮温的数值模拟[J]. 大气科学, 2008,32(3):572-580. |
[20] | [ Ding Weiyu, Wan Qilin. Numerical simulation of brightness temperature of satellite infrared channel of typhoon pearl[J]. Atmospheric Science, 2008,32(3):572-580. ] |
[21] | Barker D M, Huang W, Guo Y R, et al. A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results[J]. Monthly Weather Review, 2004,132(4):897-914. |
[22] | Weng Fuzhong. Advances in radiative transfer modeling in support of satellite data assimilation[J]. Journal of the Atmospheric Sciences, 2007,64(11):3799-3807. |
[23] | Han Y, Weng F, Liu Q, et al. A fast radiative transfer model for SSMIS upper atmosphere sounding channels[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D11): 10.1029/2006JD008208. |
[24] | 丁明月, 王俐俐, 辛渝, 等. WRF云微物理参数化方案对新疆暴雨模拟能力的TS评分分析[J]. 干旱区研究, 2019,36(6):1411-1418. |
[24] | [ Ding Mingyue, Wang Lili, Xin Yu, et al. TS score of WRF cloud microphysical parameterization scheme to the simulation capability of precipitation in Xinjiang[J]. Arid Zone Research, 2019,36(6):1411-1418. ] |
/
〈 | 〉 |