极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响

展开
  • (1. 甘肃农业大学林学院,甘肃兰州730070;2. 中国科学院西北生态环境资源研究院奈曼沙漠化研究站,甘肃 兰州730000;3. 中国科学院大学,北京100049;4. 中国科学院西北生态环境资源研究院, 乌拉特荒漠草原研究站,甘肃兰州730000)
孙一梅(1995-),女,硕士研究生,主要从事植物功能性状研究. E-mail: 1142309846@qq.com

收稿日期: 2020-06-16

  修回日期: 2020-07-22

  网络出版日期: 2021-01-24

基金资助

国家自然科学基金项目(41622103,41571106);中国科学院青年创新促进会项目(1100000036);中国科学院大学生创新实践训 练计划

Effects of extreme drought and nitrogen addition on species diversity,leaf trait, and productivity in a semiarid sandy grassland

Expand
  • (1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Lanzhou 730000, Gansu, China)

Received date: 2020-06-16

  Revised date: 2020-07-22

  Online published: 2021-01-24

摘要

以科尔沁沙质草地为研究对象,研究了短期内极端干旱(减雨60%和干旱60 d)和氮添加(20 g·m-2·a-1)对 植物群落物种多样性、叶性状和生物量的影响。结果表明:水、氮变化改变了群落中优势物种的重要值,其中优势 物种砂蓝刺头和黄蒿的重要值在短期极端干旱和氮添加处理下明显增加。短期内极端干旱对植株高度(Hight, H)、叶片氮含量(Leaf Nitrogen Content, LNC)及地上生物量有显著影响,减雨60%降低了H,而增加了LNC,生物量 在减雨60%和干旱60 d处理下均显著降低,物种多样性、比叶面积(Specific Leaf Area, SLA)、叶干物质含量(Leaf Dry Matter Content, LDMC)及叶碳含量(Leaf Carbon Content, LCC)在不同干旱处理间均无显著差异。短期氮添加对 植物叶性状及地上生物量有显著影响,H、SLA和LNC在氮添加处理下增加,而LDMC降低,植物多样性无显著变 化。极端干旱与氮添加两者交互作用对物种多样性、叶性状及生物量均无显著影响。相关回归分析表明,物种多 样性、SLA、LDMC、LCC及LNC与生物量无显著相关关系,而H与生物量显著正相关。半干旱沙质草地一年生为主 的植物群落通过改变优势物种关键性状来适应极端干旱和氮沉降,其中H对草地生产力的维持有较大的影响。

本文引用格式

孙一梅, 田青, 吕朋, 郭爱霞, 张森溪, 左小安 . 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020 , 37(6) : 1569 -1579 . DOI: 10.13866/j.azr.2020.06.23

Abstract

We examined the effects of extreme drought (rain reduction by 60% and drought for 60 days) and nitrogen addition (20 g·m- 2 ·a- 1) on species diversity, productivity, and leaf trait in Horqin Sandy Land. Results show that changes in water and nitrogen altered important values of dominant species, such that which the important values of Echinops gmelini and Artemisia scoparia increased significantly under short-term extreme drought and nitrogen addition treatment. Short-term extreme drought had a significant effect on plant height (H), leaf nitrogen content (LNC), and aboveground biomass. Following rain reduction by 60%, H decreased, while LNC increased. Aboveground biomass decreased, following rain reduction by 60% and drought for 60 days. There was no significant difference in species diversity, specific leaf area (SLA), leaf day matter content (LDMC), and leaf carbon content (LCC) between drought treatments. Short-term nitrogen addition significantly changed the leaf traits and aboveground biomass. Following the addition nitrogen, SLA, and LNC increased, while LDMC decreased. There was no significant difference in plant diversity. Interaction between extreme drought and nitrogen addition had no significant effect on species diversity, leaf traits, and aboveground biomass. Correlation and regression analysis showed that species diversity, SLA, LDMC, LCC, and LNC did not significantly correlate with biomass, while H was positively correlated with aboveground biomass following nitrogen addition. The annual dominant plant communities in semiarid sandy grassland adapt to extreme drought and nitrogen deposition by changing key traits of dominant species, in which H has a greater impact on grassland productivity

参考文献

[1] 白永飞, 黄建辉, 郑淑霞, 等. 草地和荒漠生态系统服务功能的形成与调控机制[J]. 植物生态学报, 2014, 38(2): 93-102. [BaiYongfei, Huang Jianhui, Zheng Shuxia, et al. Drivers and regulat⁃ing mechanisms of grassland and desert ecosystem services[J]. Chi⁃nese Journal of Plant Ecology, 2014, 38(2): 93-102. ] [2] Zhou G, Wang Y, Wang S. Responses of grassland ecosystems toprecipitation and land use along the Northeast China transect[J].Journal of Vegetation Science, 2002, 13(3): 361-368. [3] Bai Y F, Wu J G, Qi X, et al. Primary production and rain use effi⁃ciency across a precipitation gradient on the Mongolia plateau[J].Ecology, 2008, 89(8): 2140-2153. [4] Yue X Y, Zuo X A, Yu Q, et al. Response of plant functional traitsof Leymus chinensis to extreme drought in Inner Mongolia grass⁃lands[J]. Plant Ecology, 2019, 220(2): 141-149. [5] 张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. [ZhangBin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfalland drought events on grassland ecosystems[J]. Chinese Journal ofPlant Ecology, 2014, 38(9): 1008-1018. ] [6] Gong D Y, Wang J A, Han H. Trends of summer dry spells in Chi⁃na during the late twentieth century[J]. Meteorology and Atmo⁃spheric Physics, 2005, 88(3-4): 203-214. [7] Huang J, Xue Y, Sun S L, et al. Spatial and temporal variability ofdrought during 1960-2012 in Inner Mongolia, north China[J]. Qua⁃ternary International, 2015, 355(12): 134-144. [8] Willem K, Arthur F M. The vegetation N: P ratio: a new tool to de⁃tect the nature of nutrient limitation[J]. Journal of Applied Ecolo⁃gy, 1996, 33(6): 1441-1450. [9] Roscher C, Schumacherb J, Annett L, et al. A functional traitbasedapproach to understand community assembly and diversityproductivityrelationships over 7 years in experimental grasslands[J]. Perspectives in Plant Ecology, Evolution and Systematics,2013, 15(3): 139-149. [10] Tilman D, Downing J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461): 363-365. [11] Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitro⁃gen deposition effects on terrestrial plant diversity: A synthesis[J].Ecological Applications, 2010, 20(1): 30-59. [12] Miranda J D D, Padilla F M, Lázaro R, et al. Do changes in rain⁃fall patterns affect semiarid annual plant communities?[J]. Journalof Vegetation Science, 2009, 20(2): 269-276. [13] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen de⁃position on the species richness of grasslands[J]. Science, 2004,303(5665): 1876-1879. [14] Bai Y, Jianguo W U, Clark C M, et al. Tradeoffs and thresholds inthe effects of nitrogen addition on biodiversity and ecosystem func⁃tioning: Evidence from Inner Mongolia Grasslands[J]. Global ChangeBiology, 2010, 16(1): 358-372. [15] Clark C M, Tilman D. Loss of plant species after chronic low-levelnitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715. [16] 黄彩变, 曾凡江, 雷加强. 骆驼刺幼苗生长和功能性状对不同水氮添加的响应[J]. 草业学报, 2016, 25(12): 150-160. [HuangCaibian, Zeng Fanjiang, Le Jiaqiang. Growth and functional traitresponses of Alhagi sparsifolia seedlings to water and nitrogen ad⁃dition[J]. Acta Prataculturae Sinica, 2016, 25(12): 150-160. ] [17] Jentsch A, Kreyling J, Elmer M, et al. Climate extremes initiateecosystem-regulating functions while maintaining productivity[J].Journal of Ecology, 2011, 99(3): 689-702. [18] Goldberg D E, Miller T E. Effects of different resource additions ofspecies diversity in an annual plant community[J]. Ecology, 1990,71(1): 213-225. [19] 邢小青, 张璐, 宝音陶格涛, 等. 放牧对糙隐子草地上个体功能性状的影响[J]. 中国草地学报, 2019, 41(6): 116-122. [XingXiaoqing, Zhang Lu, Baoyin Taogetao, et al. Effect of grazing onthe aboveground functional traits of Cleistogenes squarrosa[J]. Chi⁃nese Journal of Grassland, 2019, 41(6): 116-122. ] [20] Violle C, Navas M L, Vile D, et al. Let the concept of trait be func⁃tional![J]. Oikos, 2007, 116(5): 882-892. [21] Sandra Díaz, Casanoves C F. Plant functional traits and environ⁃mental filters at a regional scale[J]. Journal of Vegetation Science,1998, 9(1): 113-122. [22] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook proto⁃col for standardised and easy measurement of plant functionaltraits[J]. Australian Journal of Botany, 2003, 51(4): 335-380. [23] Naeem S. Ecosystem consequences of biodiversity loss: The evolu⁃tion of a Paradigm[J]. Ecology, 2002, 83(6): 1537-1552. [24] Haifa D, Francesco D B, Sebastià M T, et al. Functional traitchanges, productivity shifts and vegetation stability in mountaingrasslands during a short- term warming[J]. Plos One, 2015, 10(10): e0141899. [25] 万宏伟, 杨阳, 白世勤, 等. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32(3): 611-621. [Wan Hongwei, Yang Yang, Bai Shiqin, et al. Variations in leaffunctional traits of six species along a nitrogen addition gradient inLeymus chinensis steepe in Inner Mongolia[J]. Chinese Journal ofPlant Ecology, 2008, 32(3): 611-621. ] [26] 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. [Yang Hao, Luo Yachen. Re⁃sponses of the functional traits in Cleistogenes squarrosa to nitro⁃gen addition and drought[J]. Chinese Journal of Plant Ecology,2015, 39(1): 32-42. ] [27] La Pierre K J, Smith M D. Functional trait of grasslandspecies shift with short- and long- term nutrient additions [J].Plant Ecology, 2015, 216(2): 307-318. [28] Zheng S X, Ren H Y, Lan Z C, et al. Effects of grazing on leaftraits and ecosystem functioning in Inner Mongolia grasslands:scaling from species to community[J]. Biogeosciences Discussions,2009, 6: 9945-9975. [29] 赵哈林, 张铜会, 崔建垣, 等. 近40 a我国北方农牧交错区气候变化及其与土地沙漠化的关系——以科尔沁沙地为例[J]. 中国沙漠, 2000, 20(增刊): 2-7. [Zhao Halin, Zhang Tonghui, Cui ji⁃anyuan, et al. Effect of climatic changes on environment and agri⁃culture in the past 40 years in interlaced agro-pasturing areas ofnorth China: A case study in Horqin Sandy Land[J]. Journal ofDesert Research, 2000, 20(Suppl. ): 2-7. ] [30] 吕朋, 左小安, 岳喜元, 等. 科尔沁沙地封育过程中植被特征的动态变化[J]. 生态学杂志, 2018, 37(10): 2880-2888. [Lyu Peng,Zuo Xiao’an, Yue Xiyuan, et al. Temporal changes of vegetationcharacteristics during the long-term grazing exclusion in HorqinSandy Land[J]. Chinese Journal of Ecology, 2018, 37(10): 2880-2888. ] [31] Naeem S, Li S. Biodiversity enhances ecosystem reliability[J]. Na⁃ture International Weekly Journal of Science, 1997, 390(6659):507-509. [32] 左小安, 赵学勇, 赵哈林, 等. 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系[J]. 环境科学, 2007, 28(5): 945-951. [Zuo Xiao’an, Zhao Xueyong, Zhao Halin, et al. Changes of spe⁃cies diversity and productivity in relation to soil properties in san⁃dy grassland in Horqin Sandy Land[J]. Environmental Science,2007, 28(5): 945-951. ] [33] 贾乐, 赵萌莉, 韩国栋, 等. 载畜率对荒漠草原植物群落影响的研究[J]. 中国草地学报, 2011, 33(4): 111-116. [Jia Le, ZhaoMengli, Han Guodong, et al. Effects of different stocking rate onplant community in desert steppe[J]. Chinese Journal of Grass⁃land, 2011, 33(4): 111-116. ] [34] 白春利, 阿拉塔, 陈海军, 等. 氮素和水分添加对短花针茅荒漠草原植物群落特征的影响[J]. 中国草地学报, 2013, 35(2): 69-75. [Bai Chunli, A Lata, Chen Haijun, et al. Effects of addition ofnitrogen and water on plant community characteristics of Stipabreviflora desert steppe[J]. Chinese Journal of Grassland, 2013, 35(2): 69-75. ] [35] 李禄军, 曾德慧, 于占源, 等. 氮素添加对科尔沁沙质草地物种多样性和生产力的影响[J]. 应用生态学报, 2009, 20(8): 1838-1844. [Li Lujun, Zeng Dehui, Yu Zhanyuan, et al. Effects of nitro⁃gen addition on grassland species diversity and productivity inHorqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2009,20(8): 1838-1844. ] [36] 王明明, 刘新平, 何玉惠, 等. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2020, 43(8): 672-684. [Wang Mingming, Liu Xinping, He Yuhui, et al. How enclo⁃sure influences restored plant community changes of different ini⁃tial types in Horqin Sandy Land[J]. Chinese Journal of Plant Ecolo⁃gy, 2020, 43(8): 672-684. ] [37] 梁存柱, 刘钟龄, 朱宗元, 等. 阿拉善荒漠区一年生植物层片物种多样性及其分布特征[J]. 应用生态学报, 2003, 14(6): 897-903. [Liang Cunzhu, Liu Zhongling, Zhu Zongyuan, et al. Specificdiversity and distribution characteristics of annual synusia inAlashan Desert[J]. Chinese Journal of Applied Ecology, 2003, 14(6): 897-903. ] [38] 吕朋, 左小安, 张婧, 等. 放牧强度对科尔沁沙地沙质草地植被的影响[J]. 中国沙漠, 2016, 36(1): 34-39. [Lyu Peng, Zuo Xiao’an, Zhang Jing, et al. Effects of grazing intensity on vegetation insandy grassland of Horqin[J]. Journal of Desert Research, 2016, 36(1): 34-39. ] [39] Wright I J, Reich P B, Cornelissen J H C, et al. Modulation of leafeconomic traits and trait relationships by climate[J]. Global Ecolo⁃gy and Biogeography, 2005, 14(5): 411-421. [40] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leafdry matter content as alternative predictors of plant strategies[J].New Phytologist, 1999, 143(1): 155-162. [41] 苗艳明, 吕金枝, 毕润成. 不同功能型植物叶氮含量与光合特性的关系研究[J]. 植物研究, 2012, 32(4): 425-529. [Miao Yan⁃ming, Lyu Jinzhi, Bi Runcheng. Relationships between leaf nitro⁃gen content and photosynthetic characteristics in different plantfunctional types[J]. Bulletin of Botanical Research, 2012, 32(4):425-529. ] [42] 岳喜元, 左小安, 庾强, 等. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响[J]. 中国沙漠, 2018, 38(5): 1009-1016. [Yue Xiyuan, Zuo Xiao’an, YuQiang, et al. Effects of precipitation and short term extreme drought onleaf traits in Inner Mongolia typical steppe[J]. Journal of DesertResearch, 2018, 38(5): 1009-1016. ] [43] 郑婧, 佘维维, 白宇轩, 等. 氮素和水分添加对毛乌素沙地油蒿群落优势植物叶片性状的影响[J]. 林业科学, 2018, 54(10):167-174. [Zheng Jing, She Weiwei, Bai Yuxuan, et al. Effects ofnitrogen and water addition on leaf traits of dominant plant speciesin Artemisia ordosica community of the Mu Us Desert[J]. ScientiaSilvae Sinicae, 2018, 54(10): 167-174. ] [44] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf eco⁃nomics spectrum[J]. Nature, 2004, 428(6985): 821-827. [45] MünSkemüller T, Gallien L, Lavergne S, et al. Scale decisions canreverse conclusions on community assembly processes[J]. GlobalEcology and Biogeography, 2014, 23(6): 620-632. [46] Zuo X A, Wang S K, Zhao X Y, et al. Scale dependence of plantspecies richness and vegetation-environment relationship along agradient of dune stabilization in Horqin Sandy Land, Northern Chi⁃na[J]. Journal of Arid Land, 2014, 6(3): 334-342. [47] 闫宝龙, 王占文, 王悦骅, 等. 短期降雨改变对荒漠草原植物群落特征的影响[J]. 草业科学, 2018, 35(5): 1004-1012. [YanBaolong, Wang Zhanwen, Wang Yuehua, et al. Effect of shorttermrainfall change on plant community characteristics in desertsteppe[J]. Pratacultural Science, 2018, 35(5): 1004-1012. ] [48] 高亚敏. 气候因素对科尔沁草地北部牧草生长发育的影响[J].干旱区研究, 2019, 36(2): 412-419. [Gao Yamin. Effects of cli⁃matic factors on herbage growth in the north Horqin grassland[J].Arid Zone Research, 2019, 36(2): 412-419. ] [49] 刘雪佳, 董璐, 赵杰, 等. 我国荒漠植被生产力动态及其与水热因子的关系[J]. 干旱区研究, 2019, 36(2): 459-466. [Liu Xuejia,Dong Lu, Zhao Jie, et al. Dynamic state of desert vegetation pro⁃ductivity and its relationship with water-heat factors in China[J].Arid Zone Research, 2019, 36(2): 459-466. ] [50] Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecologicalimpact in China: An overview[J]. Environmental Pollution, 2011,159(10): 2251-2264. [51] 周晓兵, 张元明, 王莎莎, 等. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响[J]. 植物生态学报, 2010, 34(12): 1394-1403. [Zhou Xiaobing, Zhang Yuanming,Wang Shasha, et al. Combined effects of simulated nitrogen depo⁃sition and drought stress on growth and photo-synthetic physiolog⁃ical responses of two annual desert plants in Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2010, 34(12): 1394-1403. ] [52] 刘思洋, 李雪华, 骆永明, 等. 围封和放牧草地植物多样性对氮添加的响应差异[J]. 生态学杂志, 2019, 38(12): 3635-3641. [LiuSiyang, Li Xuehua, Luo Yongming, et al. Divergent response ofplant diversity to nitrogen addition in enclosed and grazing grass⁃lands[J]. Chinese Journal of Ecology, 2019, 38(12): 3635-3641. ] [53] 李禄军, 曾德慧. 物种多样性与生态系统功能的关系研究进展[J]. 生态学杂志, 2008, 27(11): 178-185. [Li Lujun, Zeng Dehui.Relationships between species diversity and ecosystem functioning:A review[J]. Chinese Journal of Ecology, 2008, 27(11): 178-185. ] [54] Mao R, Zhang X H, Song C C. Effects of nitrogen addition on plantfunctional traits in freshwater wetland of Sanjiang Plain, NortheastChina[J]. Chinese Geographical Science, 2014, 24(6): 674-681. [55] Zuo X A, Zhang J, Lyu P, et al. Plant functional diversity mediatesthe effects of vegetation and soil properties on community-levelplant nitrogen use in the restoration of semiarid sandy grassland[J]. Ecological Indicators, 2016, 64: 272-280.
文章导航

/