基于SEBS 模型的精河流域蒸散发研究

展开
  • (1. 新疆师范大学地理科学与旅游学院,新疆乌鲁木齐830054;2. 乌鲁木齐气象卫星地面站, 新疆乌鲁木齐830054;3. 新疆干旱湖泊环境与资源实验室,新疆乌鲁木齐830054)
郑倩倩(1994-),女,硕士研究生,研究方向为资源环境遥感. E-mail: 703599680@qq.com

收稿日期: 2019-09-23

  修回日期: 2020-08-11

  网络出版日期: 2021-01-24

基金资助

国家自然科学基金项目(41761113);自治区自然科学基金项目(2019D01A70);新疆师范大学“十三五”校级重点学科地理学课 题资助

Evapotranspiration in the Jinghe River Basin based on the surface energy balance system

Expand
  • (1. College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China; 2. Urumqi Meteorological Satellite Ground Station, Urumqi 830054, Xinjiang, China; 3. Laboratory of Arid Lake Environment and Resources, Urumqi 830054, Xinjiang, China)

Received date: 2019-09-23

  Revised date: 2020-08-11

  Online published: 2021-01-24

摘要

:以干旱区生态脆弱区精河流域为研究区,选取1990—2016年气象观测日值数据及对应时期Landsat系列 影像六景,基于地表能量平衡系统模型方法,对1990—2016年蒸散发的时空格局进行了研究。结果表明:(1)在全 球升温的大背景下,近26 a来研究区蒸散发整体呈增加趋势,Morlet小波分析显示存在5 a、7 a、13 a尺度变化周 期。(2)研究区蒸散发量在空间呈现南高北低特征,蒸散发减少区域在东北未利用地,蒸散发显著增加区域在艾比 湖西北部和南部山区。(3)不同土地利用类型下的蒸散发量由高至低为:林地>水体>草地>耕地>建设用地>未利 用地。(4)与地表蒸散发表现出高度正相关的气象因素为风速,地表参数为高程(DEM)与地表比辐射率(ε);与地 表蒸散发表现出高度负相关的气象因素为近地表空气相对湿度,地表参数为温度植被干旱指数(TDVI)与地表温 度(Ts)。

本文引用格式

郑倩倩, 代鹏超, 张金燕, 毋兆鹏 . 基于SEBS 模型的精河流域蒸散发研究[J]. 干旱区研究, 2020 , 37(6) : 1378 -1387 . DOI: 10.13866/j.azr.2020.06.02

Abstract

The arid ecological fragile area of Jinghe Basin was selected as the research area. Daily meteorological observation data from 1990 to 2016 and six scenes of corresponding Landsat series images were investigated. The results show that under the context of global warming, evapotranspiration in the study area as a whole has increased over the past 26 years and Morlet wavelet analysis shows that there are 5 a, 7 a, 13 a scale change cycles. Additionally, evapotranspiration in the study area is spatially high in the south and low in the north. The evapotranspiration was reduced in the unused land in the northeast and significantly increased in the northwestern part of Lake Aibi and the southern mountainous area. Evapotranspiration under different land-use types followed the pattern from high to low of forest land > water body > grassland > cultivated land > construction land > unused land. Among the measured meteorological factors, wind speed was highly positively correlated with surface evapotranspiration, along with elevation and specific surface emissivity. The meteorological factors that show a highly negative correlation with surface evapotranspiration were near-surface air relative humidity, and the surface parameters were temperature vegetation drought index and surface temperature.

参考文献

[1] 代鹏超, 牛苏娟, 毋兆鹏, 等. 新疆精河流域实际蒸散发时空变化特征[J]. 生态与农村环境学报, 2017, 33(7): 600-606. [DaiPengchao, Niu Sujuan, Wu Zhaopeng, et al. Spatiotemporal varia⁃tion of actual evapotranspiration in Jinghe River Basin of Xinjiang[J]. Journal of Ecology and Rural Environment, 2017, 33(7): 600-606. ] [2] 周妍妍, 郭晓娟, 郭建军, 等. 基于SEBAL模型的疏勒河流域蒸散量时空动态[J]. 水土保持研究, 2019, 26(1): 168-177. [ZhouYanyan, Guo Xiaojuan, Guo Jianjun, et al. Spatial and temporaldynamics of evapotranspiration in the Shule River Basin based onSEBAL model[J]. Research of Soil and Water Conservation, 2019,26(1): 168-177. ] [3] Bowen L S. The ratio of heat losses by conduction and by evaporationfrom any water surface[J]. Physics Review, 1926, 27(6): 779-789. [4] Thornthwaite C W, Benjamin Holzman. The determination of evap⁃oration from land and water surfaces[J]. Monthly Weather Review,1939, 67: 4-11. [5] Monteith J L. Evaporation and environment[J]. Symposia of the So⁃ciety for Experimental Biology, 1965, 19: 205-234. [6] Menenti M, Choudhury B J. Parameterization of land surface evap-oration by means of location dependent potential evapora⁃tionand surface temperature range[C]//Exchange Processes at theLand Surface for a Range of Space and Time Scales. Walling-ford,Eng: IAHS Press, 1993: 561-568. [7] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remotesensing surface energy balance algorithm for land (SEBAL) 1. Formulation[J]. Journal of Hydrology, 1998, 212-213: 198-212. [8] Su Z. The surface energy balance system ( SEBS) for estima-tionof turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002, 6( 1) : 85-99.[9] 李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱区研究, 2020, 37(1): 26-36. [Li Xiaoyuan, Yu Deyong. Progresson evapotranspiration estimation methods and driving forces in ar⁃id and semiarid regions[J]. Arid Zone Research, 2020, 37(1): 26-36. ] [10] 王媛, 董煜, 焦黎. 艾比湖绿洲参考作物蒸散量的敏感性分析[J]. 灌溉排水学报, 2019, 38(7): 110-115. [Wang Yuan, DongYu, Jiao Li. Sensitivity analysis of the reference evapotranspira⁃tion in Ebinur Lake Oasis[J]. Journal of Irrigation and Drainage,2019, 38(7): 110-115. ] [11] 谭娇, 丁建丽, 董煜, 等. 新疆艾比湖绿洲潜在蒸散量年代际变化特征[J]. 农业工程学报, 2017, 33(5): 143-148. [Tan Jiao, DingJianli, Dong Yu, et al. Interdecadal variation characteristics of po⁃tential evapotranspiration in Ebinur Lake Oasis in Xinjiang[J].Transactions of the Chinese Society of Agricultural Engineering,2017, 33(5): 143-148. ] [12] 郭家新, 高敏华, 朱小强, 等. 基于空间三角形法的艾比湖蒸散发时空变化及其驱动力研究[J]. 安徽农学通报, 2017, 23(18):57-63. [Guo Jiaxin, Gao Minhua, Zhu Xiaoqiang, et al. Analysisof spatiotemporal changs of evapotranspiration and driving forcesof the Ebinur Lake Basin based on triangle method[J]. Journal ofAnhui Agricultural Sciences, 2017, 23(18): 57-63. ] [13] 张晓玉, 范亚云, 热孜宛古丽·麦麦提依明, 等. 基于SEBS模型的干旱区流域蒸散发估算探究[J]. 干旱区地理, 2018, 41(3):508-517. [Zhang Xiaoyu, Fan Yayun, Maimaitiyiming Reziwanguli, etal. Evapotranspiration estimation of watershed in arid area based onSEBS model[J]. Arid Land Geography, 2018, 41(3): 508-517.] [14] 王燕鑫, 李瑞平, 李夏子. 河套灌区不同土地类型生长季蒸散发量估算及其变化特征[J]. 干旱区研究, 2020, 37(2): 364-373. [Wang Yanxin, Li Ruiping, Li Xiazi. Estimation and variability ofevapotranspiration for different land types during the growing sea⁃son in the Hetao Irrigation District[J]. Arid Zone Research, 2020,37(2): 364-373. ] [15] 金学杰, 周剑. 基于SEBS模型和Landsat 8数据的黑河下游蒸散发时空特性分析[J]. 冰川冻土, 2017, 39(3): 572-582. [JinXuejie, Zhou Jian. Spatial and temporal characteristics of evapo⁃transpiration in the lower reaches of the Heihe River based onSEBS model and Landsat 8 data[J]. Journal of Glaciology andGeocryology, 2017, 39(3): 572-582. ] [16] Allen R, Tasumi M, Treza R. SABLE-Advanced Training and Us⁃er Manual-Idaho Implementation[M]. Idaho, Estados Unidos: Uni⁃versidad de Idaho, 2002: 5-18.[17] 宋文献, 江善虎, 杨春生, 等. 基于SEBS模型的老哈河流域蒸散发研究[J]. 水资源与水工程学报, 2012, 23(5): 115-118, 122.[Song Wenxian, Jiang Shanhu, Yang Chunsheng, et al. Study onevapotranspiration in the Laoha River Basin based on SEBS model[J]. Journal of Water Resources and Water Engineering, 2012, 23(5): 115-118, 122. ] [18] 赵军, 刘春雨, 潘竟虎, 等. 基于MODIS数据的甘南草原区域蒸散发量时空格局分析[J]. 资源科学, 2011, 33(2): 341-346.[Zhao Jun, Liu Chunyu, Pan Jinghu, et al. Analysis of temporal andspatial patterns of evapotranspiration in Gannan grassland based onMODIS Data[J]. Resources Science, 2011, 33(2): 341-346. ] [19] 李宝富, 陈亚宁, 李卫红, 等. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J]. 地理学报, 2011, 66(9): 1230-1238.[Li Baofu, Chen Yaning, Li Weihong, et al. Estimation of evapo⁃transpiration in the main stream of Tarim River based on remotesensing and SEBAL model[J]. Acta Geographica Sinica, 2011, 66(9): 1230-1238. ] [20] 阿布都沙拉木·吐鲁甫, 买买提·沙吾提, 马春玥, 等. 基于SE⁃BAL模型的渭-库绿洲蒸散量特征及影响因子研究[J]. 地球信息科学学报, 2018, 20(9): 1361- 1372. [Abdusalam Turup,Mamat Saeut, Ma Chunyue, et al. Study on the characteristics ofevapotranspiration and its influencing factors in the Ugan andKuqa Rivers delta Oasis based on SEBAL model[J]. Journal ofGeo-Information Science, 2018, 20(9): 1361-1372. ] [21] 宁婷婷, 刘文兆, 林文, 等. 近56年来内蒙古东胜矿区潜在蒸散发的时程变化[J]. 水土保持学报, 2014, 28(3): 62-66, 82. [NingTingting, Liu Wenzhao, Lin Wen, et al. Temporal changes of po⁃tential evapotranspiration in Dongsheng mining area in Inner Mon⁃golia during recent 56 years[J]. Journal of Soil and Water Conser⁃vation, 2014, 28(3): 62-66, 82. ] [22] 许婧璟, 靳晓言, 强皓凡, 等. 新疆艾比湖流域潜在蒸散变化特征与成因分析[J]. 灌溉排水学报, 2018, 37(2): 89-94. [XuJingjing, Jin Xiaoyan, Qiang Haofan, et al. Variety characteristicsand cause analysis of potential evapotranspiration in the EbinurLake Basin in Xingjiang[J]. Journal of Irrigation and Drainage,2018, 37(2): 89-94. ] [23] 汪彪, 曾新民, 刘正奇, 等. 中国西北地区参考作物蒸散量的估算与变化特征[J]. 干旱气象, 2016, 34(2): 243-251. [Wang Biao,Zeng Xinmin, Liu Zhengqi, et al. Estimation and variation charac⁃teristics of the reference crop evapotranspiration in Northwest Chi⁃na during 1956-2011[J]. Journal of Arid Meteorology, 2016, 34(2): 243-251. ] [24] 张景华, 封志明, 姜鲁光. 土地利用/土地覆被分类系统研究进展[J]. 资源科学, 2011, 33(6): 1195-1203. [Zhang Jinghua, FengZhiming, Jiang Luguang. Research progress in land use/land coverclassification system[J]. Resources Science, 2011, 33(6): 1195-1203. ] [25] 王非, 毋兆鹏, 汪洋, 等. 基于RS和GIS的塔里木盆地荒漠化动态监测[J]. 生态学杂志, 2017, 36(4): 1029-1037. [Wang Fei, WuZhaopeng, Wang Yang, et al. Dynamic monitoring of desertifica⁃tion in Tarim Basin based on RS and GIS[J]. Journal of Ecology,2017, 36(4): 1029-1037. ] [26] IPCC. Special Report on Global Warming of 1. 5 ℃(SR15)[M].Cambridge: Cambridge University Press, 2018: 785.[27] 热孜宛古丽·麦麦提依明, 杨建军, 刘巍. 艾比湖流域1957—2013 年潜在蒸散、气温、降水变化特征分析[J]. 冰川冻土,2016, 38(1): 69-76. [Reziwanguli Maimaityiming, Yang Jianjun,Liu Wei. Changing characteristics of potential evapotranspiration,air temperature and precipitation in Ebinur Lake basin from 1957to 2013[J]. Journal of Glaciology and Geocryology, 2016, 38(1):69-76. ] [28] 苏布达, 周建, 王艳君, 等. 全球升温1.5 ℃和2.0 ℃情景下中国实际蒸散发时空变化特征[J]. 中国农业气象, 2018, 39(5): 293-303. [Su Buda, Zhou Jian, Wang Yanjun, et al. Spatial and tem⁃poral variation of actual Evapotranspiration in China under the1.5 ℃ and 2. 0 ℃ global warming scenarios[J]. Chinese Journal ofAgrometeorology, 2018, 39(5): 293-303. ] [29] 苏向明, 刘志辉, 魏天锋, 等. 艾比湖面积变化及其径流特征变化的响应[J]. 水土保持研究, 2016, 23(3): 252-256. [Su Xiangming,Liu Zhihui, Wei Tianfeng, et al. Response of the change ofarea and its runoff characteristics in Aibi Lake[J]. Research of Soiland Water Conservation, 2016, 23(3): 252-256. ] [30] 葛翔宇. 基于机器学习近30 a艾比湖湖面变化及自然驱动因素分析[D]. 乌鲁木齐: 新疆大学, 2019. [Ge Xiangyu. Analysis ofLake Surface Change and Natural Driving Factors in Ebinur LakeBased on Machine Learning in Recent 30 a[D]. Urumqi: XinjiangUniversity, 2019. ]
文章导航

/