基于CloudSat卫星资料对中亚低涡暴雨个例的诊断分析和数值模拟

展开
  • (1. 中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002; 2. 东华大学环境科学与工程学院,上海 201620;3. 北京金风慧能技术有限公司,北京 100176)
丁明月(1992-),女,硕士,研究方向为大气环境与数值模拟. E-mail:dingmingyue92@163.com

收稿日期: 2019-08-05

  修回日期: 2019-08-21

  网络出版日期: 2020-10-18

基金资助

中国沙漠气象科学研究基金(Sqj2018001);2015年新疆高层次人才引进工程;科技部公益性行业科研专项(GYHY20150600- 9);国家自然科学基金项目(41675026,41175026)

Diagnostic analysis and numerical simulation of a Central Asian vortex rainstorm based on CloudSat satellite data

Expand
  • (1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China; 2. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 3. Beijing JinFeng HuiNeng Technology Company., Lmited, Beijng 100176, China)

Received date: 2019-08-05

  Revised date: 2019-08-21

  Online published: 2020-10-18

摘要

利用ECMWF再分析资料作为初始场和边界条件,用WRF(weather research and forecasting model,WRF) 模式对新疆地区中亚低涡暴雨个例进行模拟,结合区域自动气象站每小时降水数据、CloudSat卫星2B-CWC-RO数 据产品和FY-2E卫星TBB资料评估Lin方案、WSM 6方案、Thompson方案和WDM 6方案在新疆地区的适用性。 结果表明:Thompson方案在小雨(0.1~5.0 mm)和中雨(5.1~10.0 mm)的12 h累积降水模拟中占有优势。4种云微 物理参数化方案模拟的云顶亮温分布图均与FY-2E卫星观测十分相似,但在数值上均低于观测。从CloudSat剖面 平均冰水含量的垂直分布情况看,Thompson方案模拟冰水含量在数值和高值区的高度上模拟效果最好,Lin方案 的模拟效果最差。从3 km区域平均冰水含量的垂直分布情况看,Thompson方案模拟的云冰含量最高,WSM 6方 案与WDM 6方案模拟的云冰含量次之,且两者的冰水含量-高度廓线图几乎重合,Lin方案模拟的云冰含量最低。

本文引用格式

丁明月, 王俐俐, 辛 渝, 刘 琼, 陈勇航, 张广兴, 杨莲梅, 梁 倩, 黄 观, 刘统强 . 基于CloudSat卫星资料对中亚低涡暴雨个例的诊断分析和数值模拟[J]. 干旱区研究, 2020 , 37(4) : 936 -946 . DOI: 10.13866/j.azr.2020.04.14

Abstract

A Central Asian vortex rainstorm episode was simulated using the Weather Research and Forecasting model based on reanalysis data from the European Centre for Medium-Range Weather Forecasts. Hourly precipitation data from regional automatic weather stations, CloudSat satellite 2B-CWC-RO data, and FY-2D/E satellite TBB(Black Body Temperature)data were used to evaluate the applicability of the Lin, WSM 6, Thompson, and WDM 6 schemes in forecasting precipitation in Xinjiang. The results were as follows: the Thompson scheme was superior in the simulation of light rain(0.1-5.0 mm)and moderate rain(5.1-10.0 mm). The distribution of the cloud top bright temperature simulated using the four schemes was similar to, though slightly lower than, that measured by FY-2E satellite observation. According to the vertical distribution of the average ice content measured by CloudSat observation, the Thompson scheme was also superior in the numerical simulation of ice content and height in the high-value region; the Lin scheme performed worst in these areas. According to the vertical distribution of average ice content in a 3 km area, the cloud ice content simulated with the Thompson scheme was the highest, followed by the WSM 6 and WDM 6 schemes, and finally the Lin scheme. The ice content-height profile of the WSM 6 and WDM 6 schemes were almost coincident.

参考文献

[1] 张扬, 楚新正, 杨少敏, 等. 近56 a新疆北部地区气候变化特征 [J].干旱区研究, 2019, 36(1):212-219[. Zhang Yang, Chu Xinzheng, Yang Shaomin, et al. Climate change in north Xinjiang in recent 56 years[J]. Arid Zone Research, 2019, 36(1):212-219.] [2] 彭军, 周雪英, 赵威, 等. 新疆巴州“6·4”罕见大暴雨中尺度特 征分析[J].沙漠与绿洲气象, 2016, 10(1):68-75.[Peng Jun, Zhou Xueying, Zhao Wei, et al. Mesoscale characteristics of a rare torrential rain in Bayingolin Mongol Autonomous Prefecture [J]. Desert and Oasis Meteorology, 2016, 10(1):68-75.] [3] 朱格利, 林万涛, 曹艳华, 等. 用WRF模式中不同云微物理参 数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大 气科学, 2014, 38(3):513-523[. Zhu Geli, Lin Wantao, Cao Yanhua, et al. Numerical simulation of a rainstorm event over south china by using various cloud microphysics parameterization schemes in WRF model and its performance analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3):513-523.] [4] 董昊, 徐海明, 罗亚丽, 等. 云凝结核浓度对WRF模式模拟飑 线降水的影响:不同云微物理参数化方案的对比研究[J]. 大 气科学, 2012, 36(1):145-169.[Dong Hao, Xu Haiming, Luo Yali, et al. Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:Sensitivity to cloud microphysical schemes[J]. Chinese Journal of Atmospheric Sciences, 2012, 36 (1):145-169.] [5] 黄海波, 陈春艳, 朱雯娜, 等. WRF模式不同云微物理参数化方 案及水平分辨率对降水预报效果的影响[J]. 气象科技, 2011, 39(5):529-536.[Huang Haibo, Chen Chunyan, Zhu Wenna, et al. Impacts of different cloud microphysical processes and horizontal resolutions of WRF model on precip itation forecast effect [J]. Meteorological Science and Technology, 2011, 39(5): 529-536.] [6] 周毓荃, 赵姝慧. CloudSat卫星及其在天气和云观测分析中的 应用[J].南京气象学院学报, 2008, 31(5):603-614.[Zhou Yuquan, Zhao Shuhui. CloudSat satellite and its application in weather and cloud observation[J]. Journal of Nanjing Institute of Meteordogy, 2008, 31(5):603-614.] [7] 游景炎. 云降水物理和人工增雨技术研究[M]. 北京:气象出 版社, 1994:202-205[. You Jingyan. Study on Physics and Artificial Precipitation Enhancement Technology of Cloud Precipitation[M]. Beijing:China Meteorological Press, 1994:202-205.] [8] 马淑红, 席元伟. 新疆暴雨的若干规律性[J]. 气象学报, 1997, 55(2):239-248[. Ma Shuhong, Xi Yuanwei. Some regularities of storm rainfall in Xinjiang, China[J]. Acta Meteorologica Sinica, 1997, 55(2):239-248.] [9] 杨莲梅, 李霞, 张广兴, 等. 新疆夏季强降水研究若干进展及问 题[J]. 气候与环境研究, 2011, 16(2):188-198[. Yang Lianmei, Li Xia, Zhang Guangxing, et al. Some advances and problems in the study of heavy rain in Xinjiang[J]. Climatic and Environmental Research, 2011, 16(2):188-198.] [10]杨莲梅, 关学锋, 张迎新, 等. 亚洲中部干旱区降水异常的大气 环流特征[J].干旱区研究, 2018, 35(2):249-259[. Yang Lianmei, Guan Xuefeng, Zhang Yingxin, et al. Atmospheric circulation characteristics of precipitation anomaly in arid regions in central Asia[J]. Arid Zone Research, 2018, 35(2):249-259.] [11] Hu X M, Nielsengammon J W, Zhang F, et al. Evaluation of three planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology & Climatology, 2010, 49(9):1831- 1844. [12] Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of Atmospheric Sciences, 1989, 46(20):3077- 3107. [13] Kain J S, Fritsch J M. Convective parameterization for mesoscale models:The Kain-Fritsch scheme[J]. Meteorological Monographs, 1993, 24(46):165-170. [14] Kain, John S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology, 2004, 43(1):170- 181. [15] 张大林. 各种非绝热物理过程在中尺度模式中的作用[J]. 大 气科学, 1998, 22(4):548-561.[Zhang Dalin. Roles of various diabatic physical processes in mesoscale models[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4):548-561.] [16] Lin Y L, Farley R D, Orville H D, et al. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6):1065-1092. [17] Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei(CCN)for weather and climate models[J]. Monthly Weather Review, 2010, 138(5):1587-1612. [18] Thompson G, Field P R, Rasmussen R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. part II:Implementation of a new snow parameterization[J]. Monthly Weather Review, 2008, 136(12):5095-5115. [19] Hong S Y, Lim K S S, Lee Y H, et al. Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection[J]. Advances in Meteorology, 2010, 2:185-194. [20]尹金方, 王东海, 翟国庆, 等. 区域中尺度模式云微物理参数化 方案特征及其在中国的适用性[J]. 地球科学进展, 2014, 29 (2):238-249[. Yin Jinfang, Wang Donghai, Zhai Guoqing, et al. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China[J]. Advances in Earth Science, 2014, 29(2):238-249.] [21] Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII:A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands[J]. Journal of the Atmospheric Sciences, 1984, 41(6):2949-2972. [22] 肖开提·多莱特. 新疆降水量级标准的划分[J]. 新疆气象, 2005, 28(3):7-8.[Xiaokaiti Duolaite. Formulation of precipitation intensity standard of Xinjiang[J]. Bimonthly of Xinjiang Meteorology, 2005, 28(3):7-8.] [23] Hong S Y, Sunny Lim K S, Kim J H, et al. Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations:Ice-phase microphysics versus sedimentation effects[J]. Journal of Applied Meteorology and Climatology, 2009, 48(1):61-76. [24]邓琳, 端义宏, 高文华, 等. 超强台风“威马逊”(2014)云微物理 特征的模拟与对比分析[J].气象学报, 2016, 74(5):697-714. [Deng Lin, Duan Yihong, Gao Wenhua, et al. Numerical simulation and comparison of cloud microphysical features of super typhoon Rammasun(2014)[J]. Acta Meteorologica Sinica, 2016, 74(5):697-714.] [25] 谷晓平, 王长耀, 王汶, 等. GMS5红外卫星云图参数化及在降 水 预 测 中 的 应 用[J]. 遥 感 学 报, 2005, 9(4):459-467.[Gu Xiaoping,Wang Changyao, Wang Wen, et al. Parameterization of infrared satellite cloud imagery and its application in rainfall predication[J]. Journal of Remote Sensing, 2005, 9(4):459- 467.]
文章导航

/