覆盖逆温强度对干旱区超厚对流边界层影响的大涡模拟

展开
  • (1. 甘肃省人工影响天气办公室,甘肃 兰州 730020; 2. 兰州大学大气科学学院,半干旱气候变化教育部重点实验室,甘肃 兰州 730000; 3. 甘肃省气象局,甘肃 兰州 730020)
王蓉(1989-),女,博士,主要从事边界层湍流及沙尘传输等研究. E-mail:13679418316@163.com

收稿日期: 2019-05-08

  修回日期: 2019-06-25

  网络出版日期: 2020-10-18

基金资助

国家自然科学基金重点项目(41630426);国家自然科学基金重大研究计划(91637106);国家自然科学基金面上项目(415750- 08,41775013);国家自然科学基金青年基金项目(41905011)和兰州大学中央高校科研业务费专项资金项目(lzujbky-2019- kb02)共同资助

Large eddy simulation of the effect of the intensity of capping inversion on a super-thick convective boundary layer in an arid area

Expand
  • (1. Gansu Weather Modification Office, Lanzhou 730020, Gansu, China; 2. Key Laboratory for Semi-Arid Climate Change of the Ministry Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; 3. Gansu Meteorological Bureau, Lanzhou 730020, Gansu, China)

Received date: 2019-05-08

  Revised date: 2019-06-25

  Online published: 2020-10-18

摘要

基于干旱沙漠地区敦煌野外观测资料和大涡模式,模拟研究了覆盖逆温强度对干旱区超厚对流边界层发 展及边界层顶夹卷作用的影响。结果表明:① 覆盖逆温层被打破之前,覆盖逆温强度越弱,混合层越不稳定,越有 利于湍流垂直向上发展,对流边界层、混合层和夹卷层都较厚,夹卷速度较大,边界层顶夹卷作用较强。当覆盖逆 温层被充分发展的边界层对流完全贯穿以后,原本被限制在厚度小但能量大的强覆盖逆温层下的边界层对流,湍 流混合更剧烈,边界层顶夹卷作用更强,更有利于混合层与覆盖逆温层之上的中性层结混合,形成厚度较大的超厚 边界层。② 覆盖逆温层被打破之前,驱动边界层发展的湍流动能主要由热浮力提供;覆盖逆温层被打破以后,混合 层中的切变产生项对边界层湍流动能贡献最大。

本文引用格式

王 蓉, 黄 倩, 张 强 . 覆盖逆温强度对干旱区超厚对流边界层影响的大涡模拟[J]. 干旱区研究, 2020 , 37(4) : 925 -935 . DOI: 10.13866/j.azr.2020.04.13

Abstract

The impacts of the intensity of capping inversion on the development of a super-thick convection boundary layer and the entrainment process in an arid area were simulated by large eddy simulation using intensive field observation data from Dunhuang, China. The results show that:(1)Before the capping inversion was broken, the weaker inversion was, the more unstable the mixed layer; the more favorable the turbulent vertical upward development; the thicker the convective boundary layer, mixed layer, and entrainment layer; and the greater the entrainment speed. Additionally, the entrainment effect was strong at the top of the boundary layer when the inversion was weaker. When the capping inversion layer was completely convective through the fully developed boundary layer, the boundary layer convection, which was originally confined to the strong overlying inversion layer with low thickness and high energy, the convection mixing was more intense, the entrainment was stronger, and the more likely it was that the mixed layer and the neutral layer above the inversion layer would mix to form a super-thick boundary layer.(2)Before the capping inversion was broken, the turbulent kinetic energy of the boundary layer was mainly provided by thermal buoyancy. After the capping inversion layer was broken, the shear production term in the mixing layer contributed the most to the turbulent kinetic energy of the boundary layer.

参考文献

[1] Roland B S. An Introduction to Boundary Layer Meteorology [M]. Netherlands:Springer, Atmospheric Sciences Library, 1988. [2] 张强, 赵映东, 王胜, 等. 极端干旱荒漠区典型晴天大气热力边 界层结构分析. 地球科学进展[J]. 2007, 22(11):1150-1159. [Zhang Qiang, Zhao Yingdong, Wang Sheng, et al. A study on atmospheric thermal boundary layer structure in extremely arid desert and gobi region on the clear day in summer[J]. Advances in Earth Science, 2007, 22(11):1150-1159.] [3] 刘辉志, 冯健武, 王雷, 等. 大气边界层物理研究进展[J]. 大气 科学, 2013, 37(2):467-476.[Liu Huizhi, Feng Jianwu, Wang Lei, et al. Overview of recent studies on atmospheric boundary layer physics at LAPC[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2):467-476.] [4] 张强, 王胜. 论特强沙尘暴(黑风)的物理特征及其气候效应[J]. 中国沙漠, 2005, 25(5):675-681[. Zhang Qiang, Wang Sheng. On physical characteristics of heavy dust storm and its climatic effect [J]. Journal of Desert Research, 2005, 25(5)675-681.] [5] 张之贤, 张强, 陶际春. 边界层对青藏高原东北边坡地区一次 冰雹天气影响的数值诊断分析[J]. 干旱区研究, 2015, 32(2): 321-328.[Zhang Zhixian, Zhang Qiang, Tao Jichun. Diagnosti analysis of the effect of planet boundary layer on a hail vent in the northeastern edge of Qianghai-Tibetan Lateau[J]. Arid Zone Research, 2015, 32(2):321-328.] [6] 张强, 王蓉, 岳平, 等. 复杂条件陆-气相互作用研究领域有关 科 学 问 题 探 讨[J]. 气 象 学 报, 2017, 75(1):39-56.[Zhang Qiang, Wang Rong, Yue Ping, et al. Several scientific issues about the land-atmosphere interaction under complicated conditions[J]. Acta Meteorologica Sinica, 2017, 75(1):39-56.] [7] 张强, 王胜. 西北干旱区夏季大气边界层结构及其陆面过程特 征[J]. 气象学报, 2008, 66(4):599-608.[Zhang Qiang, Wang Sheng. A study on atmospheric boundary layer structure on a clear day in the arid region in Northwest China[J]. Acta Meteorologica Sinica , 2008, 66(4):599-608.] [8] 胡非, 洪钟祥, 雷孝恩. 大气边界层和大气环境研究进展[J]. 大气科学, 2003, 27(4):712-728.[Hu Fei, Hong Zhongxiang, Lei Xiao'en. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP[J]. Chinese Journal of Atmospheric Science, 2003, 27(4):712-728.] [9] 张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的 一次观测研究[J]. 高原气象, 2004, 23(5):587-597.[Zhang Qiang, Wei Guo'an, Hou Ping. Observation studies of atmosphere boundary layer characteristic over Dunhuang gobi in early summer[J]. Plateau Meteorology, 2004, 23(5):587-597.] [10] 黄倩. 不同下垫面上行星边界层对流的数值模拟研究[D]. 兰 州 :兰 州 大 学, 2008.[Huang Qian. Simulations of Planetary Boundary Layer Convection over Different Underling Surfaces [D]. Lanzhou:Lanzhou University, 2008.] [11] Raman S, Templeman B, Templeman S, et al. Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation[J]. Atmospheric Environment. Part A. General Topics, 1990, 24(4):723-734. [12] 周明煜, 徐详德, 卞林根, 等. 青藏高原大气边界层观测分析与 动力研究[M]. 北京:气象出版社, 2000:68-72.[Zhou Minyu, Xu Xiangde, Bian Lingen, et al. Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau [M]. Beijing:Meteorological Press, 2000:68-72.] [13] 陈陟, 周明煜, 钱粉兰, 等. 我国西部高原大气边界层中的对流 活动[J]. 应用气象学报, 2002, 13(2):142-155.[Chen Zhi, Zhou Minyu, Qian Fenlan, et al. Convective activities in the atmospheric boundary layer over the plateau Western China[J]. Journal of applied Meteorological Science, 2002, 13(2):142-155.] [14] Gamo M. Thickness of the dry convection and large-scale subsidence above deserts[J]. Boundary-Layer Meteorology, 1996, 79(3):265-278. [15] 张强. 极端干旱荒漠地区大气热力边界层厚度研究[J]. 中国 沙漠, 2007, 27(4):614-620[. Zhang Qiang. Study on depth of atmospheric thermal boundary layer in extreme arid desert regions [J]. Journal of Desert Research, 2007, 27(4):614-620.] [16] Marsham J H, Parker D J, Grams C M, et al. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmospheric Chemistry and Physics, 2008, 8(23):6979-6993. [17] Takemi T, Satomura T. Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments[J]. Journal of the Atmospheric Sciences, 2000, 57(11):1718-1740. [18] 杨洋, 刘晓阳, 陆征辉, 等. 博斯腾湖流域戈壁地区大气边界层 高度特征研究[J]. 北京大学学报(自然科学版), 2016, 52(5): 829-836.[Yang Yang, Liu Xiaoyang, Lu Zhenghui, et al. Study on depth of atmospheric boundary layer in gobi desert regions of the Bosten Lake Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5):829-836.] [19] Messager C, Parker D J, Reitebuch O, et al. Structure and dynamics of the Saharan atmospheric boundary layer during the west african monsoon onset:Observations and analyses from the research flights of 14 and 17 July 2006[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(Suppl.):107-124. [20] Parker D J, Thorncroft C D, Burton R R, et al. Analysis of the african easterly jet, using aircraft observations from the JET2000 experiment[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 131(608):1461-1482. [21] 赵建华, 张强, 王胜. 西北干旱区对流边界层发展的热力机制 模拟研究[J]. 气象学报, 2011, 69(6):1029-1037[. Zhao Jianhua, Zhang Qiang,Wang Sheng. A simulative study of the thermal mechanism for development of the convective boundary layer in the Arid Zone of Northwest China[J]. Acta Meteorologica Sinica, 2011, 69(6):1029-1037.] [22] Yi C, Davis K J, Berger B W, et al. Long-term observations of the dynamics of the continental planetary boundary layer[J]. Journal of the Atmospheric Sciences, 2001, 58(10):1288-1299. [23] 张强, 乔梁, 岳平, 等. 干旱区夏季晴空期超厚对流边界层发展 的能量机制[J]. 科学通报, 2019, 15(64):1637-1650[. Zhang Qiang, Qiao Liang, Yue Ping, et al. The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area[J]. Chinese Scienec Bulletin, 2019, 15 (64):1637-1650.] [24] Zhang Q, Wang S, Li Y Y. The Study of physical mechanism of influence on atmospheric boundary layer depth in arid regions of Northwest China[J]. Journal of Meteorological Research, 2006, 20(5):1-12. [25] 黄倩, 王蓉, 田文寿, 等. 风切变对边界层对流影响的大涡模拟 研究[J]. 气象学报, 2014, 72(1):100-115[. Huang Qian, Wang Rong, Tian Wenshou, et al. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation [J]. Acta Meteorologica Sinica, 2014, 72(1):100-115.] [26] 王蓉, 黄倩, 田文寿, 等. 边界层对流对示踪物抬升和传输影响 的大涡模拟研究[J]. 大气科学, 2015, 39(4):731-746.[Wang Rong, Huang Qian, Tian Wenshou, et al. Study of a large eddy simulation of the effects of boundary layer convection tracer uplift and transmission[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4):731-746.] [27] 王敏仲, 徐洪雄, 王寅钧, 等. 塔克拉玛干沙漠夏季晴空对流边 界层大涡模拟[J]. 中国沙漠, 2018, 38(6):161-172.[Wang Minzhong, Xu Hongxiong, Wang Yinjun, et al. Large-eddy simulation of summer clear sky convective boundary layer in the Taklimakan Desert[J]. Journal of Desert Research, 2018, 38(6): 161-172.] [28] Balsley B B, Frehlich R G, Jensen M L, et al. Extreme gradients in the nocturnal boundary layer:Structure, evolution, and potential causes[J]. Journal of the Atmospheric Sciences, 2003, 60 (20):2496-2508. [29] 万静, 孙鉴泞. 对流边界层发展受覆盖逆温影响的大涡模拟研 究[J]. 气象科学, 2010, 30(5):715-723[. Wan Jing, Sun Jianning. Impact of capping inversion on development of convective boundary layer:Evaluating the parameterization of entrainment rate through large-eddy simulation[J]. Scientia Meteorologica Sinica, 2010,30(5):715-723.] [30] 赵建华, 张强, 王胜, 等. 西北干旱区夏季大气边界层逆温强度 和高度的频率密度研究[J]. 高原气象, 2013, 32(2):377-386. [Zhao Jianhua, Zhang Qiang, Wang Sheng, et al. Studies on frequency density of inversion intensity and height of atmospheric boundary layer in arid region of Northwest China[J]. Plateau Meteorology, 2013, 32(2):377-386.] [31] 赵采玲, 吕世华, 韩博, 等. 夏季巴丹吉林沙漠残余层与深厚对 流边界层的关系研究[J]. 高原气象, 2016, 35(4):1004-1014. [Zhao Cailing, Lyu Shihua, Han Bo, et al. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer[J]. Plateau Meteorology, 2016, 35(4): 1004-1014.] [32] 姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化 研究进展[J]. 干旱区研究, 2018, 35(2):269-276[. Yao Junqiang, Yang Qing, Mao Weiyi, et al. Progress of study on variation of atmospheric water cycle factors over arid region in northwest china[J]. Arid Zone Research, 2018, 35(2):269-276.] [33] 乔娟. 西北干旱区大气边界层时空变化特征及形成机理研究 [D]. 北京:中国气象科学研究院, 2009[. Qiao Juan. The Temporal and Spatial Characteristics of Atmospheric Boundary Layer and tts Formation Mechanism over Arid Region of Northwest China[D]. Beijing:China Institute of Meteorology, 2009.] [34] Gray M E B,Petch J,Derbyshire S H,et al. Version 2.3 of the Met. Office Large Eddy Model[M]. Exeter,UK:The Met Office,2001. [35] 王蓉, 黄倩, 岳平. 大涡模式水平分辨率对边界层夹卷过程 及 示 踪 物 垂 直 传 输 的 影 响[J]. 干 旱 气 象, 2019, 37(1): 48-56.[Wang Rong, Huang Qian, Yue Ping. Effect of large eddy horizontal resolution on simulation of entrainment and tracer vertical transport[J]. Jounal of Arid Meteorology, 2019, 37(1): 48-56.] [36] 任燕, 黄倩, 张君霞, 等. 大涡模式分辨率对海洋信风区大气边 界层结构和演变模拟的影响[J]. 热带气象学报, 2018, 34(1): 23-33.[Ren Yan, Huang Qian, Zhang Junxia, et al. Effect of large eddy resolution on simulation of structure and evolution of the marine trade-wind boundary layer[J]. Journal of Tropical Meteorologica, 2018, 34(1):23-33.]
文章导航

/