其他

天山科其喀尔冰川区复杂下垫面CO2通量贡献区分析

展开
  • (1. 盐城师范学院城市与规划学院,江苏  盐城 224007;2. 中国科学院西北生态环境资源研究院 甘肃  兰州 730000)
王建(1979-),男,副教授,博士,主要研究水资源与环境. E-mail:wjshuigong@163.com

收稿日期: 2018-03-30

  修回日期: 2018-06-21

  网络出版日期: 2018-11-08

基金资助

国家自然科学基金项目(41471060,41401084,41501073,41271078,41771087)资助

CO2 Carbon Flux over Moraine Area of the Koxkar Glacier in the Tianshan Mountains

Expand
  • (1. School of Urban and Planning, Yancheng Teachers University, Yancheng 224007, China; 2. Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

Received date: 2018-03-30

  Revised date: 2018-06-21

  Online published: 2018-11-08

摘要

大气湍流交换过程中CO2有效源(汇)区域即CO2通量贡献区,在冰川作用区不仅受到水化学侵蚀强度的影响,还受区域微气候的影响,另外,动态的下垫面和复杂地形也增加了实际监测的不确定性。为了评估冰川区CO2通量监测结果的空间代表性,在西天山南坡科其喀尔冰川表碛区利用涡度协方差观测系统进行观测,同时,结合基于KM足迹模型基础上开发的ART Footprint Tool足迹软件对通量贡献区进行分析,结果表明:①积雪积累期主风向以NW为主,风向频率占53.31%;积雪消融期和冰川消融初期NW向主风减少,偏北的NNW风逐渐增多,但冰川消融峰期后又逐渐过渡为NW向风。②积雪积累期雪冰融水几乎消失,但大气CO2通量平均为-0.07 g•m-2•d-1,尤其是白天为-0.88 g•m-2•d-1,仍呈没收现象,是由于白天较强辐射下,少量积雪融水引起可溶性物质淋溶过程中水化学反应没收大气CO2所致;而夜间冰川消融峰期CO2通量值平均为0.33 g•m-2•d-1,呈释放CO2现象,这可能与夜间区域降温及降水过程中溶解的CO2因地表蒸发返回大气所致。③通量贡献率80%以上的各期0.5 h数据占比依次为:积雪积累期(95.80%)>积雪消融期(93.28%)>冰川消融峰期(86.13%)>冰川消融初期(81.88%),而足迹最远点分布距离顺序与前者几乎相反,但均分布在主风向下的冰川中流线上,说明对CO2通量监测值有显著影响的贡献区比较集中,也意味着冰川末端及两侧山脊草地CO2通量变化的影响可以忽略。④白天在大气稳态条件下,贡献区解释的CO2通量为(78.55±2.08)%,略高于夜间的(77.72±1.41)%,但显著低于非稳定条件下白天(89.86±0.22)%和夜间(89.45±0.57)%的解释结果,进一步验证了CO2通量贡献区比较集中。

本文引用格式

王建,丁永建,许民,许君利 . 天山科其喀尔冰川区复杂下垫面CO2通量贡献区分析[J]. 干旱区研究, 2018 , 35(6) : 1512 -1520 . DOI: 10.13866/j.azr.2018.06.30

Abstract

At some flux sites, the alpine zone surrounding the measuring tower is affected by complex topography and strong wind, which results in the distortion of atmospheric CO2 flux. The goal of this study was to carry out a numerical experiment with the eddy covariance system in moraine area of the Koxkar Glacier in the Tianshan Mountains, and to evaluate the integral of footprint function over the considered domain and distance of the corresponding farthest point from the sensor with the ART (Agroscope Reckenholz Tanikon) Footprint Tool base on the Kormann Meixner method. Results are as follows: ①The prevailing wind direction in snow accumulation period was NW, and its frequency accounted for 53.31%. NW wind evolved gradually into NNW one in snow melting season and early ice-glacial ablation season; ② Atmospheric CO2 sank during the majorly typical period and even snow accumulation period, because soluble substances reacted chemically under snow-ice melting; ③ Temporally, the proportion of more than 80% 0.5h CO2 flux data of footprint function in each period was in an order of > snow accumulation period (95.96%) > snow melting period (93.75%) > intense glacial ablation season (86.30%) > early glacial ablation season (82.35%). The footprint distance to the farthest point was almost in reverse order, which meant that the major areas of CO2 flux contribution were relatively concentrated, and the effect of CO2 flux change at the glacial terminal and on the ridges could be ignored; ④ Under the stable atmosphere in the daytime, the CO2 flux (78.55±2.08)% was slightly higher than that under the unstable atmosphere (77.72±1.41)% at night, but they were significantly lower than the interpretated ones.

参考文献

[1] Nicolini G, Fratini G, Avilov V, et al. Performance of eddy-covariance measurements in fetch-limited applications [J]. Theoretical and Applied Climatology, 2017, 127(3-4): 829-840.
[2] Arriga N, Rannik Ü, Aubinet M, et al. Experimental validation of footprint models for eddy covariance CO2 flux measurements above grassland by means of natural and artificial tracers [J]. Agricultural and Forest Meteorology, 2017, 242: 75-84.
[3] Pandey D, Agrawal M, Pandey J S. Carbon footprint: current methods of estimation [J]. Environmental Monitoring and Assessment, 2011, 178(1-4): 135-160.
[4] 郭智娟, 龚元, 张凯迪, 等. 复杂下垫面下不透水层的 CO2 通量足迹分析——以上海市奉贤大学城为例[J]. 环境科学学报, 2018, 38(2): 772-779.[Guo Zhijuan, Gong Yuan, Zhang Kaidi, et al. CO2 flux footprints of impervious layer on complex land surface: A case study at the Fengxian College Park, Shanghai[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 772-779.]
[5] 王江涛, 周剑虹, 欧强, 等. 崇明东滩滨海围垦湿地CO2通量贡献区分析[J]. 生态与农村环境学报, 2014, 30(5): 588-594.[Wang Jiangtao, Zhou Jianhong, Ou Qiang, et al. CO2 flux footprint analysis of coastal polder wetlands in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 2014, 30(5): 588-594.]
[6] Neftel A, Spirig C, Ammann C. Application and test of a simple tool for operational footprint evaluations[J]. Environmental Pollution, 2008, 152(3): 644-652.
[7] Sogachev A, Dellwik E. Flux footprints for a tall tower in a land–water mosaic area: A case study of the area around the Risø tower[J]. Agricultural and Forest Meteorology, 2017, 237: 326-339.
[8] Fry J, Lenzen M, Jin Y, et al. Assessing carbon footprints of cities under limited information[J]. Journal of Cleaner Production, 2018, 176: 1254-1270.
[9] Zhang F W, Liu A H, Li Y N, et al. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2008, 28(2): 453-462.
[10] 龚元, 赵敏, 姚鑫, 等. 城市生态系统复合下垫面碳通量特征——以上海市奉贤大学城为例[J]. 长江流域资源与环境, 2017, 26(1): 91-99.[Gong Yuan, Zhao Min, Yao Xin, et al. Study on carbon flux characteristics of the underlying surface of urban ecosystem—a case study of Shanghai Fengxian university city[J]. Resources and Environment in the Yangtze Basin, 2017, 26(1): 91-99.]
[11] Meyer W, Kondrlovà E, Koerber G. Evaporation of perennial semi-arid woodland in southeastern Australia is adapted for irregular but common dry periods[J]. Hydrological Processes, 2015, 29 (17): 3714-3726.
[12] 吴东星, 李国栋, 张茜. 华北平原冬小麦农田生态系统通量贡献区[J]. 应用生态学报, 2017, 28(11): 3663-3674.[Wu Dongxin, Li Guodong, Zhang Xi. Flux footprint of winter wheat farmland ecosystem in the North China Plain[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3663-3674.]
[13] Yang W B, Yuan C S, Tong C, et al. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland[J]. Marine Pollution Bulletin, 2017, 119(1): 289-298.
[14] 李守娟, 马杰, 唐立松, 等. 梭梭群落碳交换的尺度转换研究: 从叶片到群落[J]. 干旱区研究, 2016, 33(2):362-370.[Li Shoujuan, Ma Jie, Tang Lisong, et al. Scale transformation of carbon exchange over Haloxylon ammodendron community: From leaf to community[J]. Arid Zone Research, 2016, 33(2):362-370.]
[15] 马小红, 苏永红, 鱼腾飞, 等. 荒漠河岸胡杨林生态系统涡度相关通量数据处理与质量控制方法研[J].干旱区地理, 2015, 38(3): 626-635.[Ma Xiaohong, Su Yonghong, Yu Tengfei, et al. Data processing and quality control of eddy covariance in desert riparian forest[J]. Arid Land Geography, 2015, 38(3): 626-635.]
[16] Tortell P, Long M, Payne C, et al. Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 71: 77-93.
 [17] Rosane G, Tavano V M, Mendes C R, et al. Sea-air CO2 fluxes and pCO2 variability in the Northern Antarctic Peninsula during three summer periods (2008-2010)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 31(1): 1-12.
[18] Wrobel I. Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010[J]. Oceanologia, 2017, 59(4): 445-459.
[19] Berryman E, Frank J, Massman W, et al. Using a Bayesian framework to account for advection in seven years of snowpack CO2 fluxes in a mortality-impacted subalpine forest[J]. Agricultural and Forest Meteorology, 2018, 249: 420-433.
[20] 赵亮, 徐世晓, 伏玉玲, 等. 积雪对藏北高寒草甸CO2和水汽通量的影响[J]. 草地学报, 2005, 13(3): 242-247.[Zhao Liang, Xu Shixiao, Fu Yuling, et al. Effects of snow cover on CO2 flux of northern alpine meadow on Qinghai-Tibetan plateau[J]. Acta Agrestia Sinica, 2005, 13(3): 242-247.]
[21] Guo X F, Yang K, Zhao L, et al. Critical evaluation of scalar roughness length parametrizations over a melting valley glacier[J]. Boundary-layer Meteorology, 2011, 139(2): 307-332.
[22] Litt M, Sicart J, Helgason W, et al. Turbulence characteristics in the atmospheric surface layer for different wind regimes over the tropical Zongo Glacier (Bolivia, 16°S)[J]. Boundary-layer Meteorology, 2015, 154(3): 471-495.
[23] Lund M, Stiegler C, Abermann J, et al. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland[J]. Ambio, 2017, 46: 81-93.
[24] Yao J, Gu L, Han H, et al. The surface energy budget on the debris-covered Koxkar Glacier in China[J]. Environmental Earth Sciences, 2014, 72(11): 4503-4510.
[25] Krawczyk W, Bartoszewski S. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002[J]. Journal of Hydrology, 2008, 362(3-4): 206-219.
[26] Donnini M, Frondini F, Probst J, et al. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region[J]. Global and Planetary Change, 2016, 136: 65-81.
[27] Galeczka I, Sigurdsson G, Eiriksdottir E, et al. The chemical composition of rivers and snow affected by the 2014/2015 Bárðarbunga eruption, Iceland[J]. Journal of Volcanology and Geothermal Research, 2016, 316: 101-119.
[28] Feng F, Li Z Q , Jin S, et al. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No.1, eastern Tianshan, northwest China[J]. Journal of Mountain Science, 2012, 9(4): 472-482.
[29] 王叶堂, 侯书贵, 鲁安新,等. 近40年来天山东段冰川变化及其对气候的响应[J]. 干旱区地理, 2008, 31(6): 813-821.[Wang Yetang, Hou Shugui, Lu Anxin, et al. Response of glacier variations in the eastern Tianshan Mountains to climate change during the last 40 years[J]. Arid Land Geography, 2008, 31(6): 813-821.]
[30] Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
[31] 韩海东, 刘时银, 丁永建, 等. 科其喀尔巴西冰川的近地层基本气象特征[J]. 冰川冻土, 2008, 30(6): 967-975. [Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 967-975.]
[32] 谢昌卫, 丁永建, 刘时银, 等. 近 30年来托木尔峰南麓科其喀尔冰川冰舌区变化[J]. 冰川冻土, 2006, 28(5): 672-677.[Xie Changwei, DingYongjian, Liu Shiyin, et al. Variation of Keqikaer glacier terminus in Tomur peak during last30 years[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 672-677.]
[33] 王玉玉, 姚济敏, 韩海东, 等. 科其喀尔冰川表碛区空气动力学粗糙度分析[J]. 高原气象, 2014, 33(3): 762-768.[Wang Yuyu, Yao Jimin, Han Haidong, et al. Analysis of aerodynamic roughness of the debris-covered Keqicar Glacier[J]. Plateau Meteorology, 2014, 33(3): 762-768.]
[34] Wharton S, Ma S, Baldocchi D, et al. Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain[J]. Agricultural and Forest Meteorology, 2017, 237: 18-29
[35] Gu S, Tang Y H, Du M Y, et al. Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan plateau[J]. Journal of Geophysical Research, 2003, 108: 4670-4679.
[36] Zhu Z, Sun X, Wen X, et al. Study on the processing method of nighttime CO 2 eddy covariance flux data in ChinaFLUX[J]. Science in China Series D: Earth Sciences, 2006, 49(2): 36-46.
[37] Risch A C, Frank D A. Diurnal and seasonal patterns in ecosystem CO2 fluxes and their controls in a temperate grassland[J]. Rangeland Ecology & Management, 2010, 63(1): 62-71.
[38] Kormann R, Meixner F X. An analytical footprint model for non-Neutral stratification[J].Boundary-layer Meteorology, 2001, 99(2): 207-224.
[39] 贾庆宇, 周广胜, 王宇. 沈阳城市 CO2 通量的足迹分析[J]. 环境科学学报, 2010, 30(8): 1682-1687.[Jia Qingyu, Zhou Guangsheng, Wang Yu. Footprint characteristics of CO2 flux over the urban district of Shenyang[J]. Acta Scientiae Circumstantiae, 2010, 30(8): 1682-1687.]
[40] 张勇, 刘时银, 韩海东, 等. 天山南坡科其卡尔巴契冰川消融期气候特征分析[J]. 冰川冻土, 2004, 26(5): 545-550.[Zhang Yong, Liu Shiyin, Han Haidong, et al. Characteristics of climate on the Keqicar glacier on the south slopes of the Tianshan Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 545-550.]
[41] 王玉玉, 姚济敏, 韩海东, 等. 天山南坡科其喀尔冰川表碛区小气候特征研究[J]. 冰川冻土, 2014, 36(3): 546-554.[Wang Yuyu, Yao Jimin, Han Haidong, et al. Analysis of the microclimatic characteristics in the debris-covered area of the Koxkar Glacier on the southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 546-554.]
[42] Fortuniak K, Pawlak W, Bednorz L, et al. Methane and carbon dioxide fluxes of a temperate mire in Central Europe[J]. Agricultural and Forest Meteorology, 2017, 232: 306-318.
[43] Niu H W, Kang S C, Shi X F, et al. Water-soluble elements in snow and ice on Mt. Yulong[J]. Science of the Total Environment, 2017, 574: 889-900.
[44] Mouri G. Baseline characteristics of a debris-covered snow-covered gorge in a typical Japanese mountainous terrain[J]. Gondwana Research, 2016, 35: 155-163.
文章导航

/