土壤及土壤环境

模拟增温增雨对典型草原土壤酶活性的影响

展开
  • (1.内蒙古大学生态与环境学院,内蒙 古呼和浩特 010021;2.中国农业科学院农业环境与可持续发展研究所,北京 100081)

收稿日期: 2017-12-11

  修回日期: 2018-03-31

  网络出版日期: 2018-09-20

基金资助

国家重点研发计划(2016YFC0500508);国家牧草产业技术体系-牧区混播栽培(CARS-34-02A);内蒙古自然科学基金重大项目(2014ZD02);国家科技支撑计划专题《适应气候变化的优质牧草品种筛选以及关键技术集成》(2013BAC09B03-2)资助

Effects of Simulated Temperature and Precipitation Increase on Soil Enzyme Activity in Typical Steppe

Expand
  • (1. College of Ecology and Environment, Inner Mongolia University,Hohhot 010021, Inner Mongolia, China;
    2. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China)
钞然(1994-),女,硕士研究生,研究方向为气候变化与草地生态学.E-mail:ranchao2016@163.com

Received date: 2017-12-11

  Revised date: 2018-03-31

  Online published: 2018-09-20

摘要

气候变化对生态系统的影响呈增加趋势。土壤酶作为草地土壤中活跃的组分之一,与草地土壤养分含量关系密切。为探究半干旱地区酶活性及土壤养分对气候变化的响应,利用开顶式生长室于2011—2016年在典型草原进行模拟增温增雨试验。结果表明:(1)增温使土层0~10 cm硝态氮和铵态氮含量分别增加40.2%和129.1%,增雨使硝态氮含量增加63.5%,铵态氮含量降低63.6%。(2)土层的增温使土层0~10 cm过氧化氢酶活性和蔗糖酶活性分别降低4.8%和13.3%。与增温的效果相反,增雨使碱性磷酸酶活性、蔗糖酶活性和脲酶活性分别提高7.1%、35.7%和14.9%,对过氧化氢酶无显著影响(P>0.05)。(3)土层0~10 cm硝态氮和铵态氮含量有增加趋势(P<0.05),不同种类的土壤酶活性对气候变化的响应存在差异,这可能与气候变化趋势下土壤养分循环的变化有关。

本文引用格式

钞然,张东,陈雅丽,万志强,高清竹2*,包铁军1,杨劼1 . 模拟增温增雨对典型草原土壤酶活性的影响[J]. 干旱区研究, 2018 , 35(5) : 1068 -1074 . DOI: 10.13866/j.azr.2018.05.08

Abstract

The impacts of climate change on ecosystems will be expanded in the future. Soil enzyme is one of the active components in grassland soil, and it is closely related to soil nutrient content. In this study, the top-opened growth chambers were used to simulate the temperature increase and rainfall increase in a typical steppe in 2011 so as to explore the response of soil nutrient content and enzyme activity to climate change in semiarid area. The experiment was carried out under four treatments, i.e. the w CK (controlled), T (temperature controlled), P (rainfall increased) and TP(both temperature and rainfall increased) respectively. The values of soil nutrient availability and of activity of four enzymes were measured. It was found that the contents of soil nitrate nitrogen and ammonium nitrogen were increased by 40.2% and 129.1% respectively by increasing temperature. The nitrate nitrogen content was increased by 63.5% by increasing rainfall, but the ammonium nitrogen content was decreased by 63.6%. The activities of catalase and sucrose enzyme were decreased by 4.8% and 13.3% respectively by increasing temperature. Contrarily, the activities of alkaline phosphatase, sucrose enzyme and urease were increased by 7.1%, 35.7% and 14.9% respectively by increasing rainfall, but there was no significant effect of rainfall increase on catalase (P>0.05). The contents of nitrate nitrogen and ammonium nitrogen were in an increase trend under the interaction of both temperature increase and rainfall increase (P<0.05). The responses of four soil enzyme activities to climate change were different, which may be related to the change of nutrient cycling with climate change.

参考文献

[1]IPCC. Highlight of IPCC Working Group I Fifth Assessment Report [M]. Progressus Inquisitiones De Mutatione Climatis,2014.

[2]Luo Y. Terrestrial Carbon Cycle Feedback to Climate Warming[C]//IOP Conference Series: Earth and Environmental Science,2009: 2022.

[3] Ma Zhiyuan, Liu Huiying, Mi Zhaorong,et al.Climate warming reduces the temporal stability of plant community biomass production [J]. Nature Communications, 2017, 8(8):15 378.

[4] Dijkstra F A, Morgan J A, Follett R F, et al. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland [J]. Global Chang Biology, 2013, 19(6):1 816-1 826.

[5]杨月娟, 周华坤, 姚步青,. 长期模拟增温对矮嵩草草甸土壤理化性质与植物化学成分的影响[J]. 生态学杂志,2015, 34 (3): 781-789. [Yang Yuejuan , Zhou Huakun, Yao Buqing, et al. Effects of long-term simulated warming on soil physicochemical properties and plant chemical components of Kobresia humilis meadow [J]. Chinese Journal of Ecology, 2015, 34(3):781-789.]

[6]Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2010, 14(12):2 898-2 909.

[7] Ren Haiyan, Xu Zhuwen, Forest Isbell, et al. Exacerbated nitrogen limitation ends transient simulation of grassland productivity by increased precipitation [J]. Ecological Monographs, 2017, 87.

[8]Bell Terrence H, Henry Hugh A L. Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system[J]. Pedobiologia, 2011, 54(2):141-146.

[9]Allison S D, Wallenstein M D, Bradford M A. Soil carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010;3:336-340.

[10]Wallenstein M, Allison S D, Ernakovich J, et al. Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates[M].Soil Enzymology. Springer Berlin Heidelberg, 2010:245-258.

[11]Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J].Ecological Applications,14(4):1 172-1 177.

[12]Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling [J]. Global Change Biology, 2008, 4:2 898-2 909.

[13]Zhou Xiaoqi, Chen Chengrong, Wang Yanfen, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland [J]. Science of the Total Environment, 2013,444 (2):552-558.

[14]杨雪梅,杨太保,刘海猛,.气候变暖背景下近30 a北半球植被变化研究综述[J].干旱区研究, 2016,33(2):379 -391. [Yang Xuemei, Yang Taibao, Liu Haimeng, et al. Vegetation variation in the North Hemisphere under climate warming in the last 30 years[J]. Arid Zone Research, 2016,33(2):379-391.]

[15]张雪峰,牛建明,张庆,.内蒙古锡林河流域草地生态系统水源涵养功能空间格局[J].干旱区研究, 2016,33(4): 814-821.[Zhang Xuefeng, Niu jianming, Zhang Qing. Spatial pattern of water conservation function in grassland ecosystem in the Xilin River Basin,Inner Mongolia[J]. Arid Zone Research, 2016,33(4):814-821.

[16]陈建宇,赵景波.1960-2014年内蒙古极端天气事件趋势分析[J].干旱区研究,2017,34(5):997-1 009. [Chen Jianyu, Zhao Jingbo. Trends of extreme weather events in Inner Mongolia during the period of 1960-2014[J]. Arid Zone Research, 2017, 34(5):997-1 009.]

[17]Christensen LCoughenour M BEllis J Eet alVulnerability of the Asian typical steppe to grazing and climatic change [J]. Climatic Change,2004,63 (3):351-368

[18]云文丽, HOU Q, 乌兰巴特尔.近50年气候变化对内蒙古典型草原净第一性生产力的影响[J].中国农业气象, 2008, 29(3): 294-297[Yun Wenli, Hou Q, Wulanbateer. Impacts of climate change over last 50 years on net primary productivity in typical steppe of Inner Mongolia [J]. Chinese Journal of Agrometeorology, 2008, 29(3):294-297.]

[19]陈楠楠. 2000-2014年气候变化背景下锡林郭勒盟草地气候生产力的时空动态分析[D].呼和浩特:内蒙古大学, 2016.[Temporal and Spatial Dynamics of Grassland Climatic Productivity in Xilinguole from 2000 to 2014[D].Hohhot: Inner Mongolia University, 2016.]

[20]鲍士旦.土壤农化分析[M].3.北京:中国农业出版社, 2007.[Bao Shidan. Soil and Agricultural Chemistry Analysis[M]. Beijing:China Agriculture Press, 2007.]

[21]关松荫.土壤酶及其研究方法[M].北京:农业出版社, 1986.[Guan Songyin. Soil Enzymes and Research Methods [M]. Beijing: Agriculture Press,1986.]

[22]盛文萍. 气候变化对内蒙古草地生态系统影响的模拟研究[D]. 北京:中国农业科学院, 2007.[Sheng Wenping. Simulation of Climate Change ImPacton Grassl and Ecosystem in Inner Mongolia[D]. Beijing:Chinese Academy of Agricultural Sciences ,2007].

[23]Marschner B,Bredow A.Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples [J]. Soil Biology and Biochemistry, 2002, 34( 4) : 459-466

[24]黄锦学, 熊德成, 刘小飞,等.增温对土壤有机碳矿化的影响研究综述.生态学报, 2017, 37(1): 12-24. [Huang Jinxue, Xiong Decheng, Liu Xiaofei, et al. Effects of warming on soil organic carbon mineralization: A review. Acta Ecologica Sinica, 2017, 37(1): 12-24.]

[25]Sardans J, Pen?Uelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39(2):223-235.

[26]白春华. 控制性增温和施氮肥对土壤性质的影响[D].呼和浩特:内蒙古农业大学.2011.[Bai Chunhua. The Effects of Experimental Warming and Nitrogen Addition on Soil Properties[D] Hohhot: Inner Mongolia Agricultur -al University, 2011.]

[27]李源. 东北黑土氮素转化和酶活性对水热条件变化的响应[D].长春:东北师范大学, 2015.[Li Yuan.The Influence of Hydrothermal Conditions Change on Nitrogen Transformation and Enzyme Activities in Black Soil in Northeast China[D]. Changchun: Northeast Normal University, 2015.]

[28]Stone M M, Weiss M S, Goodale C L, et al. Temperature sensitivity of soil enzyme kinetics under N fertili -zation in two temperate forests [J]. Global Change Biology, 2012, 18(3):1 173-1 184.

[29]Jing Xin, Wang Yonghui, Chung Haegenu , et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau [J]. Biogeochemistry, 2014, 117(1):39-54.

[30]鲁萍,郭继勋,朱丽. 东北羊草草原主要植物群落土壤过氧化氢酶活性的研究[J].应用生态学报,2002,13( 6):675-679.[ Lu Ping, Guo Jixun, Zhu Li. Soil catalase activity of main plant communities in Leymus chinensis grassland in northeast China[J]. Chinese Journal of Applied Ecology, 2002, 13(6):675-679.]

[31] Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2008, 14(12):2 898-2 909.

[32]王珍. 增温和氮素添加对内蒙古短花针茅流漠草原植物群落、土壤及生态系统碳交换的影响[D].呼和浩特:内蒙古农业大学,2012.[Wang Zhen. Influences of warming and N Addition on Plant Community, Soil and Ecosystem C Exchange on Inner Mongolia Desert Steppe[D]. Hohhot: Inner Mongolia Agricultural University, 2012.]

[33] Brzostek E R, John M. Blair, Dukes J S, et al. The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal[J]. Global Change Biology, 2012, 18(8): 2 617-2 625.

[34] Weintraub M N, Schimel J P. Seasonal protein dynamics in Alaskan arctic tundra soils[J]. Soil Biology and Biochemistry, 2005, 37(8):1 469-1 475.

[35]鲁萍. 东北羊草草原主要植物群落土壤酶活性的研究[D].长春:东北师范大学, 2002.[Luping. The Research on Soil Enzyme Activities in Main Plant Communities of Leymus chinensis grassland.[D] Changchun: Northeast Normal University, 2002.]

文章导航

/