卫星降水产品对昆仑山北坡极端暴雨的监测能力及偏差分析
收稿日期: 2025-04-09
修回日期: 2025-06-25
网络出版日期: 2025-10-22
基金资助
自治区“天山英才”培养计划(2023TSYCCX0077);新疆气象高层次骨干人才项目;自治区“天池英才”项目
Capability and biases of satellite precipitation products in monitoring extreme rainstorms along the northern slope of the Kunlun Mountains
Received date: 2025-04-09
Revised date: 2025-06-25
Online published: 2025-10-22
昆仑山北坡地形复杂,极端暴雨事件频发,但现有地面观测站点稀少且分布不均,难以捕捉复杂地形下极端暴雨的精细化分布和演变过程,高分辨率卫星数据为极端暴雨的监测提供了新的手段。本文基于昆仑山北坡383个气象台站逐小时降水数据和8种卫星降水产品,选取研究区内3次极端暴雨过程,综合评估了8种卫星降水产品在监测昆仑山北坡极端降水事件中的适用性,定量分析卫星降水产品对昆仑山北坡极端降水的监测能力。结果表明:(1) GPM IMERG Early、GPM IMERG Late、GPM IMERG Final降水产品在捕捉昆仑山北坡极端暴雨空间分布和降水量方面表现较好,命中率均大于99%。GPM IMERG Final产品表现最优,个例3中其与地面观测降水量的相关系数达0.64,FY2H和FY4A降水产品在极端降水过程定性和定量评估中均与站点实测有一定差距,相关系数最低在0.01以下。(2) 在极端降水过程的时间演变特征方面,8种卫星降水产品均存在一定误差,偏差幅度在-95%~250%,相较于其他卫星产品GPM IMERG Final在各时次降水量和变化趋势上表现最优,准确率和TS评分超过0.8。(3) 8种卫星降水产品再现3次极端暴雨空间范围较观测偏小,在降水强度上整体偏弱,存在明显的低估特征。漏报误差在偏差相对贡献率中普遍占比在50%以上,这是导致卫星降水产品对强降水事件低估的主要原因之一。总体来看,卫星降水产品能在一定程度上反映昆仑山北坡极端降水过程,但其监测精度需进一步提升,该研究结果可以为研究区不同应用选用最合适的卫星降水产品提供科学依据,同时为降水产品偏差校正、算法改进及该区域极端降水的监测提供一定的数据支撑。
于志翔 , 杨霞 , 于晓晶 , 姜旭涛 . 卫星降水产品对昆仑山北坡极端暴雨的监测能力及偏差分析[J]. 干旱区研究, 2025 , 42(10) : 1777 -1790 . DOI: 10.13866/j.azr.2025.10.03
The northern slope of the Kunlun Mountains is characterized by complex topography, extreme rainstorms, and an uneven distribution of meteorological stations, making it challenging to accurately capture the fine-scale spatial distribution and temporal evolution of extreme rainstorms using conventional, ground-based observations. Satellite precipitation products for monitoring rainstorms not only effectively fill the regional gap but also improve the capability of monitoring and early warning for severe catastrophic weather. On the basis of hourly precipitation data from 383 meteorological stations and eight sets of satellite precipitation products over the northern slope of the Kunlun Mountains, we selected three representative extreme rainstorm processes to comprehensively assess the applicability of eight satellite precipitation products for monitoring extreme precipitation events and quantitatively analyze their performance on the northern slope of the Kunlun Mountains. The results were as follows: (1) The GPM IMERG Early, GPM IMERG Late, and GPM IMERG Final products showed good performance in capturing the spatial distribution and magnitude of extreme precipitation, with hit rates exceeding 99%. Among them, the GPM IMERG Final product had the best performance, with a correlation coefficient of 0.64 between ground-observed precipitation and the GPM IMERG Final product during Event 3. The FY2H and FY4A precipitation products showed certain discrepancies in comparison with ground observations in both qualitative and quantitative evaluations, with low correlation coefficients (below 0.01). (2) In terms of temporal evolution characteristics of extreme precipitation processes, all satellite precipitation products showed certain biases, ranging from -95% to 250%. In comparison with the other satellite products, the GPM IMERG Final product outperformed in terms of precipitation amounts at each time step and temporal trends, with accuracy and threat score values above 0.8. (3) The spatial extent of the three extreme rainstorms reproduced by eight satellite precipitation products was smaller than that indicated by observations, and the intensity was weaker, with obvious underestimation characteristics. The missing detection bias generally accounted for more than 50% of the relative contribution rate of errors, which is one of the main reasons for the underestimation of extreme heavy precipitation events by satellite precipitation products. Overall, satellite precipitation products reflected the extreme precipitation processes on the northern slope of the Kunlun Mountains to a certain extent, but their accuracy in monitoring requires further improvement. These results provide a scientific basis for selecting appropriate satellite precipitation products for regional applications and offer data support for bias correction, algorithm optimization, and improved monitoring of extreme precipitation in this region.
| [1] | 丁一汇. 暴雨和中尺度气象学问题[J]. 气象学报, 1994, 52(3): 274-284. |
| [Ding Yihui. Some aspects of rainstorm and meso-csale meteorology[J]. Acta Meteorologica Sinica, 1994, 52(3): 274-284. ] | |
| [2] | 刘松楠, 汪君, 王会军. 高分辨率卫星对“21·7”河南特大暴雨监测能力分析[J]. 气象学报, 2022, 80(5): 765-776. |
| [Liu Songnan, Wang Jun, Wang Huijun. Analysis of the monitoring ability of high-resolution satellites for the “21·7” heavy rain in Henan[J]. Acta Meteorologica Sinica, 2022, 80(5): 765-776. ] | |
| [3] | 李晓萌, 杨莲梅, 李建刚, 等. 昆仑山北坡“6·14”极端暴雨过程的中尺度对流系统特征分析[J]. 干旱区地理, 2024, 47(10): 1700-1712. |
| [Li Xiaomeng, Yang Lianmei, Li Jiangang, et al. Mesoscale convective systems characteristic analysis of the “6·14” extreme rainstorm in northern slope of the Kunlun Mountains[J]. Arid Land Geography, 2024, 47(10): 1700-1712. ] | |
| [4] | 杨霞, 杨柳. 昆仑山北坡西段和中段暴雨的特征及差异[J]. 干旱区研究, 2025, 42(2): 202-211. |
| [Yang Xia, Yang Liu. Characteristics and differences in heavy rainfall in the western and central sections of the northern slope of the Kunlun Mountains[J]. Arid Zone Research, 2025, 42(2): 202-211. ] | |
| [5] | 徐柳昕, 王文雨, 王晓燕, 等. 多源降水产品在高寒内陆河流域的适用性和误差组分[J]. 干旱区研究, 2025, 42(1): 51-62. |
| [Xu Liuxin, Wang Wenyu, Wang Xiaoyan, et al. Evaluation and error decomposition of multisource precipitation data in an alpine and endorheic river watershed[J]. Arid Zone Research, 2025, 42(1): 51-62. ] | |
| [6] | 庞琛锟. 多种卫星降水产品对中国大陆极端降水的监测能力评估[D]. 郑州: 河南大学, 2023. |
| [Pang Chenkun. Evaluation of Monitoring Capability of Various Satellite Precipitation Products for Extreme Precipitation in the Mainland of China[D]. Zhengzhou: Hennan University, 2023. ] | |
| [7] | 刘若兰, 江善虎, 任立良, 等. 全球降水观测计划IMERG降水产品对中国大陆极端降雨监测能力评估[J]. 中国农村水利水电, 2021(4): 57-63. |
| [Liu Ruolan, Jiang Shanhu, Ren Liliang, et al. Evaluation of GPM IMERG precipitation product in capturing extreme precipitation events over China’s mainland[J]. China Rural Water and Hydropower, 2021(4): 57-63. ] | |
| [8] | 卢美圻. GPM/DPR星载双频雷达探测降水的敏感性与差异性分析[D]. 南京: 南京信息工程大学, 2017. |
| [Lu Meiqi. Analysis of the Sensitivity and Difference Based on GPM/DPR Spaceborne Dual Frequency Radar for Detecting Precipitation[D]. Nanjing: Nanjing University of Information Science & Technology, 2017. ] | |
| [9] | 高玥, 徐慧, 刘国. GSMaP遥感降水产品对典型极端降水事件监测能力评估[J]. 遥感技术与应用, 2019, 34(5): 1121-1132. |
| [Gao Yue, Xu Hui, Liu Guo. Evaluation of the GSMaP estimates on monitoring extreme precipitation events[J]. Remote Sensing Technology and Application, 2019, 34(5): 1121-1132. ] | |
| [10] | 谷松岩, 张鹏, 陈林, 等. 中国首颗降水测量卫星(风云三号G星)的探测能力概述与展望[J]. 暴雨灾害, 2023, 42(5): 489-498. |
| [Gu Songyan, Zhang Peng, Chen Lin, et al. Overview and prospect of the detection capability of China’s first precipitation measurement satellite FY-3G[J]. Torrential Rain and Disasters, 2023, 42(5): 489-498. ] | |
| [11] | 李晨蕊, 伏晶, 刘维成, 等. 应用FY卫星产品分析陇东半干旱区特大暴雨事件云特征[J]. 干旱气象, 2022, 40(6): 954-967. |
| [Li Chenrui, Fu Jing, Liu Weicheng, et al. Cloud characteristics analysis of a torrential rainfall event use FY satellite in semi-arid region of eastern Gansu Province[J]. Journal of Arid Meteorology, 2022, 40(6): 954-967. ] | |
| [12] | Kummerow C J, Simpson O, Thiele W, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit[J]. Journal of Atmospheric and Oceanic Technology, 1998, 39: 1965-1982. |
| [13] | 傅云飞, 罗晶, 罗双, 等. GPM卫星DPR和GMI探测的2018年5月重庆超级单体云团降水结构特征分析[J]. 暴雨灾害, 2022, 41(1): 1-14. |
| [Fu Yunfei, Luo Jing, Luo Shuang, et al. Rainstorm structure of a supercell cloud occurred in Chongqing in May 2018 measured by GPM DPR and GMI[J]. Torrential Rain and Disasters, 2022, 41(1): 1-14. ] | |
| [14] | 张中波, 马红, 范泽. FY2卫星反演云特征参数与湖南省降水的相关性[J]. 中南农业科技, 2024, 45(8): 121-125. |
| [Zhang Zhongbo, Ma Hong, Fan Ze. The correlation between FY2 satellite-retrieved cloud characteristic parameters and precipitation in Hunan Province[J]. South-Central Agricultural Science and Technology, 2024, 45(8): 121-125. ] | |
| [15] | 常倬林, 党张利, 孙艳桥, 等. 基于FY2G卫星的宁夏空中云水资源特征研究[J]. 气象研究与应用, 2022, 43(1): 47-52. |
| [Chang Zhuolin, Dang Zhangli, Sun Yanqiao, et al. Study on characteristics of air cloud water resources in Ningxia based on FY2G satellite[J]. Journal of Meteorological Research and Application, 2022, 43(1): 47-52. ] | |
| [16] | 王一丞, 刘维成, 宋兴宇, 等. 卫星降水产品在陇东2022年7月特大暴雨事件中的适用性评估[J]. 干旱气象, 2023, 41(6): 997-1007. |
| [Wang Yicheng, Liu Weicheng, Song Xingyu, et al. Applicability evaluation of satellite-derived precipitation products in the torrential heavy rainfall event in East Gansu in July 2022[J]. Journal of Arid Meteorology, 2023, 41(6): 997-1007. ] | |
| [17] | 孙乐强, 郝振纯, 王加虎, 等. TMPA卫星降水数据的评估与校正[J]. 水利学报, 2014, 46(10): 1135-1146. |
| [Sun Leqiang, Hao Zhenchun, Wang Jiahu, et al. Assessment and correction of TMPA products 3B42RT and 3B42V6[J]. Shuili Xuebao, 2014, 46(10): 1135-1146. ] | |
| [18] | Chen F, Crow W T, Ciabatta L, et al. Enhanced large-scale validation of satellite-based land rainfall products[J]. Journal of Hydrometeorology, 2021, 22(2): 245-257. |
| [19] | Sun Q, Miao C, Duan Q, et al. A review of global precipitation data sets: Data sources, estimation, and intercomparisons[J]. Reviews of Geophysics, 2018, 56(1): 79-107. |
| [20] | Hou A Y, Kakar R K, Neeck S, et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2013, 95(5): 701-722. |
| [21] | 张奡祺, 傅云飞. GPM卫星双频测雨雷达探测降水结构的个例特征分析[J]. 大气科学, 2018, 42(1): 33-51. |
| [Zhang Aoqi, Fu Yunfei. The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 33-51. ] | |
| [22] | 陈汉清, 鹿德凯, 周泽慧, 等. GPM降水产品评估研究综述[J]. 水资源保护, 2019, 35(1): 27-34. |
| [Chen Hanqing, Lu Dekai, Zhou Zehui, et al. An overview of assessments on global precipitation measurement (GPM) precipitation products[J]. Water Resources Protection, 2019, 35(1): 27-34. ] | |
| [23] | 肖开提·多莱特. 新疆降水量级标准的划分[J]. 沙漠与绿洲气象, 2005, 28(3): 7-8. |
| [Xiaokaiti Duolaite. Formulation of precipitation intensity standard of Xinjiang[J]. Desert and Oasis Meteorology, 2005, 28(3): 7-8. ] | |
| [24] | 杨霞, 周鸿奎, 赵逸舟, 等. 新疆夏季暴雨精细化特征分析[J]. 气象, 2021, 47(12): 1501-1511. |
| [Yang Xia, Zhou Hongkui, Zhao Yizhou, et al. Analysis on fine-scale characteristics of summer rainstorm in Xinjiang[J]. Meteorological Monthly, 2021, 47(12): 1501-1511. ] | |
| [25] | 李伶杰, 胡庆芳, 黄勇, 等. 近实时卫星降水数据对南京“20170610”极端性强降水过程的监测分析[J]. 高原气象, 2018, 37(3): 806-814. |
| [Li Lingjie, Hu Qingfang, Huang Yong, et al. Monitoring and analysis of the extreme heavy rainfall process on June 10, 2017 in Nanjing using five near real time satellite rainfall estimations[J]. Plateau Meteorology, 2018, 37(3): 806-814. ] | |
| [26] | 胡庆芳, 张野, 李伶杰, 等. GPM近实时反演数据对河南省2021年“7·20”极端暴雨的比较分析[J]. 水科学进展, 2022, 33(4): 567-580. |
| [Hu Qingfang, Zhang Ye, Li Lingjie, et al. Comparative evaluation of GPM near-real-time precipitation products during the 20 July 2021 extreme rainfall event in Henan Province[J]. Advances in Water Science, 2022, 33(4): 567-580. ] |
/
| 〈 |
|
〉 |