生物炭改良的风沙地植物-土壤-微生物生态化学计量特征及其内稳性
收稿日期: 2024-07-04
修回日期: 2025-02-10
网络出版日期: 2025-04-10
基金资助
内蒙古自治区自然基金项目(2021LHMS08031);内蒙古自治区直属高校基本科研项目(GXKY23Z014);内蒙古民族大学博士启动基金项目(BS602);蒙医药研发工程教育部重点实验室开放课题(MDK2024035)
Ecostoichiometric characteristics and homeostasis of the plant-soil-microbial ecosystem in eolian sandy land amended with biochar
Received date: 2024-07-04
Revised date: 2025-02-10
Online published: 2025-04-10
植物-土壤-微生物系统的C、N、P含量内稳性是调控脆弱生态系统养分循环的关键机制。针对科尔沁沙地风沙土C、N、P化学计量失衡及有机改良效应不明的问题,通过田间试验,对比了生物炭与秸秆添加对燕麦种植系统元素计量特征的影响。试验设置对照组(CK)、生物炭添加组(低量B1:3%、中量B2:5%、高量B3:10%)和秸秆添加组(低量S1:3%、中量S2:5%、高量S3:10%),并基于生态化学计量学与内稳性理论,解析了植物(燕麦)、土壤和微生物的C:N:P的响应特征。结果表明:(1) 中高量生物炭(B2和B3)显著优化了系统的养分循环,在调控C、N、P分配方面优于秸秆。具体表现为:生物炭对燕麦茎叶的C、N、P含量无显著影响,但显著提高根系C、N、P含量,尤其B3梯度下,根系C、N、P含量较对照组分别提高了45.2%、65.2%、71.4%,较秸秆S3梯度分别高出28.7%、60.2%、14.5%。同时,生物炭显著提升土壤和微生物C、N、P含量,较对照组分别提高240.2%、157.8%、81.2%和95.3%、88.7%、134.7%,较秸秆S3梯度分别高出118.4%、81.4%、17.5%和61.2%、21.7%、43.5%。此外,生物炭显著降低茎叶、根系及微生物的C:N和C:P,同时提高土壤C:N和C:P,表现出双向调节作用,而秸秆处理未显现此效应。(2) 生物炭和秸秆添加下,根系的内稳性较弱,对外源养分输入的响应更为迅速,而茎叶和微生物的内稳性较强。(3) 植物和微生物的C、N、P元素内稳性整体表现为C>N>P,比值内稳性表现为N:P>C:P>C:N。综合而言,生物炭通过增强植物(燕麦)对N、P的吸收和同化,显著提升了植物-土壤-微生物系统的固碳和元素内稳性,其中高量(B3)生物炭效果最为显著。本研究为沙地农业系统的可持续管理及生物炭资源化利用提供了重要的理论依据和实践指导。
淑敏 , 同拉嘎 , 红艳 , 青云 . 生物炭改良的风沙地植物-土壤-微生物生态化学计量特征及其内稳性[J]. 干旱区研究, 2025 , 42(4) : 718 -729 . DOI: 10.13866/j.azr.2025.04.13
Stoichiometric homeostasis of carbon (C), nitrogen (N), and phosphorus (P) in the plant-soil-microbial continuum is crucial for the maintenance of nutrient cycling stability in fragile ecosystems. To address the challenges of imbalanced C:N:P stoichiometry in eolian sandy soils and the uncertain effects of organic amendments in the Horqin Sandy Land, this study conducted a field experiment to compare the impacts of biochar and straw additions on the stoichiometric characteristics of C, N, and P within an oat cultivation system. The experimental design included a control group (CK), biochar amendment treatments (low B1: 3%, medium B2: 5%, and high B3: 10% by mass), and straw amendment treatments (low S1: 3%, medium S2: 5%, and high S3: 10% by mass). Grounded in ecological stoichiometry and homeostasis theory, this study systematically analyzed the C:N:P response characteristics of oat plants, soil, and microbial communities. The results showed that (1) Biochar amendments (B2 and B3) significantly enhanced the C-N-P cycling efficiency of the oat system and demonstrated superior regulation over elemental allocation compared with straw addition. While biochar had negligible effects on C, N, and P content in oat shoots, it considerably increased these nutrients in the roots. Under the B3 treatment, root C, N, and P content increased by 45.2%, 65.2%, and 71.4%, respectively, relative to the control (CK), outperforming straw S3 by 28.7%, 60.2%, and 14.5%. Soil C, N, and P pools exhibited even greater responses: biochar B3 elevated soil C (240.2% vs. CK; 118.4% vs. S3), N (157.8% vs. CK; 81.4% vs. S3), and P (81.2% vs. CK; 17.5% vs. S3) contents. Microbial biomass followed a similar trend, with C, N, and P increasing by 95.3%, 88.7%, and 134.7% over CK, and by 61.2%, 21.7%, and 43.5% over S3, respectively. Additionally, biochar significantly reduced the C:N and C:P ratios in the shoots, roots, and microbial biomass while increasing these ratios in the soil. This bidirectional regulatory effect was not observed with straw treatment. (2) The homeostasis of oat roots under biochar and straw addition exhibited weaker stability and higher sensitivity to exogenous nutrient inputs compared with stems, leaves, and microorganisms. (3) The C, N, and P concentrations in the plants and microbial biomass of different organs of jasmine followed the order of C>N>P, and the C:N, C:P, and N:P ratios followed the order of N:P>C:P>C:N. Collectively, biochar amendments significantly enhanced the C sequestration capacity and elemental stoichiometric stability of the plant-soil-microbial continuum by improving the oat’s N and P assimilation efficiency. The high-dose biochar (B3 treatment) demonstrated the most pronounced effects. This study establishes a mechanistic foundation for sustainable management of sandy agroecosystems and provides practical guidelines for using biochar as a carbon-negative soil amendment in arid regions.
[1] | 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. |
[He Jinsheng, Han Xingguo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6.] | |
[2] | 李敏, 孙杰, 陈雪, 等. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113. |
[Li Min, Sun Jie, Chen Xue, et al. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants[J]. Arid Zone Research, 2024, 41(1): 104-113.] | |
[3] | Zhang J H, Zhao N, Liu C C, et al. C:N:P stoichiometry in China’s forests: From organs to ecosystems[J]. Functional Ecology, 2018, 32(1): 50-60. |
[4] | 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征[J]. 生态学报, 2022, 42(3): 935-946. |
[Yu Yuefeng, He Tieguang, Zeng Chengcheng, et al. Carbon, nitrogen and phosphorus stoichiometry in plants, litter, soil, andmicrobes in degraded vegetation communities in a karst area of Southwest China[J]. Acta Ecologica Sinica, 2022, 42(3): 935-946.] | |
[5] | 孙娇, 梁锦秀, 孔德杰, 等. 生物炭与秸秆还田对风沙土壤-微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2021, 30(11): 29-39. |
[Sun Jiao, Liang Jinxiu, Kong Dejie, et al. Effects of biochar and straw on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil[J]. Acta Prataculturae Sinica, 2021, 30(11): 29-39.] | |
[6] | 王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J]. 生态学报, 2018, 38(11): 3848-3858. |
[Wang Chuanjie, Wang Qiqi, Xu Hu, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland[J]. Acta Ecologica Sinica, 2018, 38(11): 3848-3858.] | |
[7] | 高庆磊, 李子川, 尹力初, 等. 施肥和水位对土壤-水稻生态化学计量特征的影响[J]. 生态学杂志, 2020, 39(7): 2223-2232. |
[Gao Qinglei, Li Zichuan, Yin Lichu, et al. Effects of fertilization and water level on ecological stoichiometry of soil and rice straw[J]. Chinese Journal of Ecology, 2020, 39(7): 2223-2232.] | |
[8] | 游惠明. 氮添加对秋茄植物-土壤-微生物碳氮化学计量学及其稳态特征的影响[J]. 生态学杂志, 2022, 41(10): 1909-1915. |
[You Huiming. Efects of nitrogen addition on carbon and nitrogen stoichiometry and homeostasis characteristics of Kandelia obowata plants-soil-microbial system, Chinese[J]. Chinese Journal of Ecology, 2022, 41(10): 1909-1915.] | |
[9] | 邵光成, 吴世清, 房凯, 等. 生物炭添加提高渍水条件下番茄产量改善品质[J]. 农业工程学报, 2019, 35(19): 160-167. |
[Shao Guangcheng, Wu Shiqing, Fang Kai, et al. Biochar application improving yield and quality of tomato suffering from waterlogging stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 160-167.] | |
[10] | 刘悦, 黎子涵, 邹博, 等. 生物炭影响作物生长及其与化肥混施的增效机制研究进展[J]. 应用生态学报, 2017, 28(3): 1030-1038. |
[Liu Yue, Li Zihan, Zou Bo, et al. Research progress in effects of biochar application on crop growth and synergistic mechanism of biochar with fertilizer[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 1030-1038.] | |
[11] | 刘菁华, 米彩红, 周丽丽, 等. 生物炭还田对融雪期棕壤有效养分的影响[J]. 西北农业学报, 2018, 27(6): 880-887. |
[Liu Jinghua, Mi Caihong, Zhou Lili, et al. Effect of biochar returning on brown soil available nutrient during snowmelt period[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(6): 880-887.] | |
[12] | 丁乐, 杨弋, 倪辉, 等. 生物炭配施对芳樟精油产量及品质的影响[J]. 中南林业科技大学学报, 2022, 42(5): 91-100. |
[Ding Le, Yang Yi, Ni Hui, et al. Effects of biochar application on the yield and quality of Cinnamomum camphora essential oil[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 91-100.] | |
[13] | 周佳慧, 张昆, 谢志坚, 等. 稻秆炭还田对红壤双季稻田土壤碳氮磷钾生态化学计量学特征及其综合肥力的影响[J]. 核农学报, 2024, 38(5): 968-975. |
[Zhou Jiahui, Zhang Kun, Xie Zhijian, et al. Effects of rice-Straw biochar on ecological stoichiometry characteristics of C, N, P, K and the integrated fertility of reddish paddy soil in double-rice cropping field[J]. Journal of Nuclear Agricultural Sciences, 2024, 38(5): 968-975.] | |
[14] | 李文杰, 左翔之, 王建, 等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学, 2023, 43(11): 5913-5923. |
[Li Wenjie, Zuo Xiangzhi, Wang Jian, et al. Effect and mechanism of biochar application on soil carbon sequestration and mitigation[J]. China Environmental Science, 2023, 43(11): 5913-5923.] | |
[15] | 林少颖, 曾瑜, 杨文文, 等. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报 2023, 47(4): 530-545. |
[Lin Shaoying, Zeng Yu, Yang Wenwen, et al. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil[J]. Chinese Journal of Plant Ecology, 2023, 47(4): 530-545.] | |
[16] | 郑笑影, 王东丽, 赵晓亮, 等. 菌剂配施有机肥下植物-土壤-微生物生态化学计量特征及内稳性——以内蒙古矿区排土场中药复垦模式为例[J]. 水土保持学报, 2023, 37(5): 352-362. |
[Zheng Xiaoying, Wang Dongli, Zhao Xiaoliang, et al. Ecostoichiometric characteristics and internal stability of plant-soil-microbial ecosystem under organic fertilizer application with fungicides-An example of traditional chinese medicine reclamation model in a mining site in Inner Mongolia[J]. Journal of Soil and Water Conservation, 2023, 37(5): 352-362.] | |
[17] | 程昊天, 孔涛, 吕刚, 等. 不同林龄樟子松人工林土壤-针叶-微生物生态化学计量及稳态性特征[J]. 生态学杂志, 2022, 41(5): 887-894. |
[Cheng Haotian, Kong Tao, Lv Gang, et al. The soil-needle-mierbe ecological stoichiometry and homeostasis in Pinus sylestris var. mongolica plantations with diferent stand ages[J]. Chinese Journal of Ecology, 2022, 41(5): 887-894.] | |
[18] | 马玉凤, 介冬梅, 严平, 等. 科尔沁东部沙地土壤可风蚀性研究[J]. 世界地质, 2007, 26(3): 338-344. |
[Ma Yufeng, Jie Dongmei, Yan Ping, et al. Study on wind erodibility in soil under eastern Horqin sandy land[J]. Global Geology, 2007, 26(3): 338-344.] | |
[19] | 高传俊, 杨晨曦, 高欣, 等. 种植模式对科尔沁沙地土壤微生物群落的影响[J]. 干旱区资源与环境, 2023, 37(4): 162-169. |
[Gao Chuanjun, Yang Chenxi, Gao Xin, et al. Effects of cropping patterns on soil microbial communities in Kerchin sandy land[J]. Journal of Arid Land Resources and Environment, 2023, 37(4): 162-169.] | |
[20] | 夏海勇, 王凯荣, 赵庆雷, 等. 秸秆添加对土壤有机碳库分解转化和组成的影响[J]. 中国生态农业学报, 2014, 22(4): 386-393. |
[Xia Haiyong, Wang Kairong, Zhao Qinglei, et al. Effects of straw addition on decomposition, transformation and compositionof soil organic carbon pool[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 386-393.] | |
[21] | Wang C Q, Luo D, Zhang X, et al. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review[J]. Environmental Science and Ecotechnology, 2022, 10: 100167. |
[22] | Chagas J K M, Figueiredo C C, Ramos M L G. Biochar increases soil carbon pools: Evidence from a global meta-analysis[J]. Journal of Environmental Management, 2022, 305: 114403. |
[23] | Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377-385. |
[24] | 林少颖, 赖清志, 刘旭阳, 等. 秸秆及配施生物炭对福州茉莉园土壤碳、氮、磷、铁含量及其生态化学计量学特征影响[J]. 环境科学学报, 2021, 41(9): 3777-3791. |
[Lin Shaoying, Lai Qingzhi, Liu Xuyang, et al. feets of sraw and biochar on soil caron, nitrgen, phosphons and iron contents and eplogical stoichiometrie characteristies of jasmine garden in Fuzhou[J]. Acta Seientiae Circumstantiae, 2021, 41(9): 3777-3791.] | |
[25] | 林少颖, 曾瑜, 陈金梅, 等. 施用秸秆和生物炭的茉莉园土壤微生物量及细菌多样性的差异[J]. 环境科学学报, 2023, 43(8): 384-395. |
[Lin Shaoying, Zeng Yu, Chen Jinmei, et al. Differences in soil microbial biomass and bacterial diversity under straw and biochar amendments in Jasminum sambac garden[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 383-395.] | |
[26] | 程淑兰, 方华军, 徐梦, 等. 氢沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285-8295. |
[Cheng Shulan, Fang Huajun, Xu Meng, et al. Regulalion of plant-soil-mierobe inerxctions to soil oganie caon in naturdl ecosystemsunder elevaled nitrogen deposilion: A review[J]. Acta Ecologica Sinica, 2018, 38(23): 8285-8295.] | |
[27] | 彭亚敏, 武均, 蔡立群, 等. 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响[J]. 生态学杂志, 2021, 40(4): 1062-1072. |
[Peng Yamin, Wu Jun, Cai Liqun, et al. Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil[J]. Chinese Journal of Ecology, 2021, 40(4): 1062-1072.] | |
[28] | Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006. |
[29] | Koerselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441-1450. |
[30] | Tian H, Che G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98: 139-151. |
[31] | 王强, 耿增超, 许晨阳, 等. 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响[J]. 环境科学, 2020, 41(5): 2425-2433. |
[Wang Qiang, Geng Zengchao, Xu Chenyang, et al. Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou soil[J]. Environmental Science, 2020, 41(5): 2425-2433.] | |
[32] | 孙连伟, 陈静文, 邓琦. 全球变化背景下陆地植物N/P生态化学计量学研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 534-540. |
[Sun Lianwei, Chen Jingwen, Deng Qi. Research progress of terrestrial plants N/P ecological stoichiometry under global change[J]. Joumalof Tropical and Subtropical Botany, 2019, 27(5): 534-540.] | |
[33] | Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to The Biosphere[M]. Princeton: Princeton University Press, 2002. |
[34] | Wang J, Liu X Y, Kuzyakov Y K, et al. Long-term biochar application alters soil microbial community structure and enhances ecosystem multifunctionality[J]. Soil Biology and Biochemistry, 2021, 156: 108185. |
/
〈 |
|
〉 |