水土资源

土壤微生物群落对放牧的响应及其与环境因子的关系

  • 江康威 ,
  • 王亚菲 ,
  • 刘晨通 ,
  • 李宏 ,
  • 吕程 ,
  • 吐尔逊娜依·热依木 ,
  • 张青青
展开
  • 1.新疆农业大学草业学院,新疆 乌鲁木齐 830052
    2.新疆农业大学资源与环境学院,新疆 乌鲁木齐 830052
    3.新疆农业大学生命科学学院,新疆 乌鲁木齐 830052
江康威(1998-),男,硕士研究生,主要研究方向为草地生态恢复. E-mail: waff981021@163.com
张青青. E-mail: greener2010@sina.com

收稿日期: 2024-09-24

  修回日期: 2024-11-20

  网络出版日期: 2025-03-17

基金资助

国家自然科学基金项目(2522GZRJJ);国家自然科学基金项目(31960338);国家自然科学基金项目(41561103);东北师范大学植被生态科学教育部重点实验室开放项目(130026533)

Responses of soil microbial communities to grazing and their relationship with environmental factors

  • JIANG Kangwei ,
  • WANG Yafei ,
  • LIU Chentong ,
  • LI Hong ,
  • LYU Cheng ,
  • Tursunnay REYIMU ,
  • ZHANG Qingqing
Expand
  • 1. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    3. College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

Received date: 2024-09-24

  Revised date: 2024-11-20

  Online published: 2025-03-17

摘要

为探究不同土壤微生物群落特征对放牧强度响应的差异性,选取天山北坡中段不同放牧强度的草地为研究区域,通过野外调查与室内分析,探讨土壤微生物群落特征随放牧强度的变化规律及其与土壤因子的内在关联。结果表明:放线菌门(Actinobacteria)和子囊菌门(Ascomycota)分别为细菌和真菌的优势菌门。与重度放牧相比,轻度放牧显著提升了微生物群落的α多样性(P<0.05),并促进了土壤微生物生物量碳、氮、磷含量的积累。冗余分析与Mantel检验表明,土壤微生物群落特征与土壤全氮呈正相关,与土壤容重呈负相关(P<0.05)。结构方程模型显示,放牧通过增加容重和降低土壤养分对微生物的多样性、丰富度、生物量及OTUs特征产生负向影响(P<0.05),且微生物群落多样性对放牧的响应具有更高的敏感性。综上,轻度放牧有利于改善微生物群落,合理调控放牧强度是保障微生物群落稳定发展的可行策略。

本文引用格式

江康威 , 王亚菲 , 刘晨通 , 李宏 , 吕程 , 吐尔逊娜依·热依木 , 张青青 . 土壤微生物群落对放牧的响应及其与环境因子的关系[J]. 干旱区研究, 2025 , 42(3) : 467 -479 . DOI: 10.13866/j.azr.2025.03.07

Abstract

To explore the differences in the responses of different soil microbial community characteristics to grazing intensity, grasslands with different grazing intensities in the middle section of the northern slopes of Tianshan Mountains were selected as a focus for this study. Combining field investigation and indoor analysis, the changing patterns of soil microbial community characteristics with grazing intensity and their intrinsic correlation with soil factors were analyzed. The results showed that Actinobacteria and Ascomycota were the dominant phyla of bacteria and fungi, respectively. Compared with the findings upon heavy grazing, light grazing significantly increased the alpha diversity of microbial communities (P<0.05) and promoted the accumulation of soil microbial biomass carbon, nitrogen, and phosphorus contents. Redundancy analysis and Mantel test showed that the soil microbial community characteristics were positively correlated with the soil total nitrogen and negatively correlated with the soil bulk density (P<0.05). Furthermore, the structural equation model showed that grazing negatively impacted the microbial diversity, richness, biomass, and OTUs characteristics by increasing the bulk density and reducing the soil nutrients (P<0.05). Compared with other indicators, soil microbial community diversity was more sensitive to grazing. In summary, light grazing is conducive to improving the microbial community, and reasonable regulation of grazing intensity is a feasible strategy to ensure the stable development of microbial communities.

参考文献

[1] Lian X H, Jiao L M, Liu Z J, et al. Multi-spatiotemporal heterogeneous legacy effects of climate on terrestrial vegetation dynamics in China[J]. GIScience & Remote Sensing, 2022, 59(1): 164-183.
[2] Schwabedissen S G, Lohse K A, Reed S C, et al. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems[J]. Biogeochemistry, 2017, 134(1-2): 57-76.
[3] 郑慧, 薛江博, 桂建华, 等. 放牧强度对华北农牧交错带典型草地土壤化学计量特征的短期影响[J]. 应用生态学报, 2021, 32(7): 2433-2439.
  [Zheng Hui, Xue Jiangbo, Du Jianhua, et al. Short-term effects of grazing intensity on soil stoichiometric characteristics of typical grassland in the agro-pastoral ecotone of northern China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2433-2439.]
[4] 赵轻舟, 王艳芬, 崔骁勇, 等. 草地土壤微生物多样性影响因素研究进展[J]. 生态科学, 2018, 37(3): 204-212.
  [Zhao Qingzhou, Wang Yanfen, Cui Xiaoyong, et al. Research progress of the influence factors of soil microbial diversity in grassland[J]. Ecological Science, 2018, 37(3): 204-212.]
[5] Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of management of an upland grassland[J]. Biology and Fertility of Soils, 1996, 22(3): 261-264.
[6] Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems & Environment, 2016, 222: 213-222.
[7] 郑佳华, 赵萌莉, 王琪, 等. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报, 2022, 42(12): 4998-5008.
  [Zheng Jiahua, Zhao Mengli, Wang Qi, et al. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland[J]. Acta Ecologica Sinica, 2022, 42(12): 4998-5008.]
[8] 张彤, 刘静, 韩叙, 等. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202.
  [Zhang Tong, Liu Jing, Han Xu, et al. Effects of grazing on soil nutrients and microbial community of Pinus sylvestris var. mongolica forest in sandy land[J]. Arid Zone Research, 2023, 40(2): 194-202.]
[9] Xu W H, Xu H M, Delgado-baquerizo M, et al. Global meta-analysis reveals positive effects of biochar on soil microbial diversity[J]. Geoderma, 2023, 436: 116528.
[10] 苏比努尔·吾麦尔江, 吐尔逊娜依·热依木, 于昭文, 等. 山地草甸草地植物与昆虫多样性对放牧强度的响应[J]. 中国草地学报, 2023, 45(3): 20-29.
  [Subinuer Wumaierjiang, Tuersunnayi Reyimu, Yu Zhaowen, et al. The responses of mountain meadow plant and insect diversity to grazing intensity[J]. Chinese Journal of Grassland, 2023, 45(3): 20-29.]
[11] 江康威, 张青青, 王亚菲, 等. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718.
  [Jiang Kangwei, Zhang Qingqing, Wang Yafei, et al. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities[J]. Chinese Journal of Plant Ecology, 2024, 48(6): 701-718.]
[12] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005.
  [Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2005.]
[13] Wang Z, Jiang S Y, Struik P C, et al. Plant and soil responses to grazing intensity drive changes in the soil microbiome in a desert steppe[J]. Plant and Soil, 2023, 491(6): 219-237.
[14] 江康威, 张青青, 王亚菲, 等. 放牧对天山荒漠草地土壤细菌群落的影响[J]. 草业科学, 2023, 40(5): 1243-1257.
  [Jiang Kangwei, Zhang Qingqing, Wang Yafei, et al. Differences in soil bacterial communities of desert grasslands in Tianshan under different grazing disturbances[J]. Pratacultural Science, 2023, 40(5): 1243-1257.]
[15] 赵文, 尹亚丽, 李世雄, 等. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171.
  [Zhao Wen, Yin Yali, Li Shixiong, et al. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains[J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171.]
[16] Zhang C, Li J, Wang J, et al. Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland[J]. Geoderma, 2019, 351: 49-58.
[17] Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10967-10972.
[18] Ding C X, Xu X J, Liu Y W, et al. Diversity and assembly of active bacteria and their potential function along soil aggregates in a paddy field[J]. Science of the Total Environment, 2023, 866: 161360
[19] 祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J]. 干旱区研究, 2021, 38(1): 87-94.
  [Qi Zhengchao, Chang Peijing, Li Yongshan, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland[J]. Arid Zone Research, 2021, 38(1): 87-94.]
[20] 杨阳, 贾丽欣, 乔荠瑢, 等. 重度放牧对荒漠草原土壤养分及微生物多样性的影响[J]. 中国草地学报, 2019, 41(4): 72-79.
  [Yang Yang, Jia Lixin, Qiao Jirong, et al. Effects of heavy grazing on soil nutrients and microbial diversity in desert steppe[J]. Chinese Journal of Grassland, 2019, 41(4): 72-79.]
[21] 童永尚, 张春平, 董全民, 等. 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响[J]. 环境科学, 2024, 45(6): 3595-3604.
  [Tong Yongshang, Zhang Chunping, Dong Quanmin, et al. Effects of different forms of nitrogen addition on soil physical and chemical properties and microbial community structure of perennial alpine cultivated grassland[J]. Environmental Science, 2024, 45(6): 3595-3604.]
[22] Heijden M G A V D, Bardgett R D, Straalen N M V. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3): 296-310.
[23] Delgado-baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7: e02634.
[24] 王新, 王云英, 裴薇薇, 等. Meta分析放牧对中国草地土壤氮素矿化和硝化作用的影响[J]. 草地学报, 2023, 31(8): 2490-2495.
  [Wang Xin, Wang Yunying, Pei Weiwei, et al. Meta-analysis of effects of grazing on soil nitrogen mineralization and nitrification in grassland in China[J]. Acta Agrestia Sinica, 2023, 31(8): 2490-2495.]
[25] Hoogendoorn C J, Newton P C D, Devantier B P, et al. Grazing intensity and micro-topographical effects on some nitrogen and carbon pools and fluxes in sheep-grazed hill country in New Zealand[J]. Agriculture, Ecosystems and Environment, 2016, 217(3): 22-32.
[26] Delgado-baquerizo M, Reith F, Dennis P G, et al. Eclogical drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere[J]. Ecology, 2018, 99(3): 583-596.
[27] Hu Y, Yu G L, Zhou J Q, et al. Grazing and reclamation-induced microbiome alterations drive organic carbon stability within soil aggregates in alpine steppes[J]. Catena, 2023, 231: 107306.
[28] Choudhury B U, Mandal S. Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India)[J]. Ecological Indicators, 2021, 123: 107369.
[29] Yang Y, Zhang H, Liu W, et al. Effects of grazing intensity on diversity and composition of rhizosphere and non-rhizosphere microbial communities in a desert grassland[J]. Ecology and Evolution, 2023, 13(7): e10300.
[30] Zhang Y, Wang G M, Wang X, et al. Grazing regulates changes in soil microbial communities in plant-soil systems[J]. Agronomy, 2023, 13(3): 708.
[31] Xu H W, You C M, Tan B, et al. Effects of livestock grazing on the relationships between soil microbial community and soil carbon in grassland ecosystems[J]. Science of the Total Environment, 2023, 881: 163416.
[32] Yang X, Zang J Y, Feng J L, et al. High grazing intensity suppress soil microorganisms in grasslands in China: A meta-analysis[J]. Applied Soil Ecology, 2022, 177: 104502.
文章导航

/