水土资源

基于遥感的土壤盐渍化风险评估及其演变规律

  • 强欣欢 ,
  • 高文文 ,
  • 王博 ,
  • 谭剑波 ,
  • 赵旦 ,
  • 闫世勇 ,
  • 隋立春
展开
  • 1.长安大学地质工程与测绘学院,陕西 西安 710054
    2.太原理工大学水利科学与工程学院,山西 太原 030024
    3.中国地质调查局西安矿产资源调查中心,陕西 西安 710101
    4.秦岭—黄土高原过渡带水土要素耦合与生物资源保育野外观测研究站,陕西 渭南 714000
    5.自然资源部自然资源要素耦合过程与效应重点实验室,北京 100055
    6.长沙理工大学交通运输工程学院,湖南 长沙 410001
    7.中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100094
    8.中国科学院大学资源与环境学院,北京 100049
    9.中国矿业大学环境与测绘学院,江苏 徐州 221116
强欣欢(1999-),女,硕士研究生,主要从事生态遥感. E-mail: 2021126044@chd.edu.cn
高文文. E-mail: gaowenwen@tyut.edu.cn

收稿日期: 2024-09-12

  修回日期: 2024-11-19

  网络出版日期: 2025-03-17

基金资助

山西省基础研究计划青年项目(202203021212273);中国地质调查局地质调查项目(DD20220882);中国地质调查局地质调查项目(KC20230013)

Remote sensing-based risk assessment of soil salinization and its change over time

  • QIANG Xinhuan ,
  • GAO Wenwen ,
  • WANG Bo ,
  • TAN Jianbo ,
  • ZHAO Dan ,
  • YAN Shiyong ,
  • SUI Lichun
Expand
  • 1. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, Shaanxi, China
    2. School of Hydro Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    3. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710101, Shaanxi, China
    4. Qinling-Loess Plateau Transition Zone Observation and Research Station for Coupling of Soil and Water Elements and Conservation of Biological Resources, Weinan 714000, Shaanxi, China
    5. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    6. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410001, Hunan, China
    7. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    8. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    9. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

Received date: 2024-09-12

  Revised date: 2024-11-19

  Online published: 2025-03-17

摘要

土壤盐渍化风险评估监测对于精准治理盐渍土、保障农业与生态可持续发展具有重要意义。本文以大荔县为研究对象,依据土壤盐分驱动机理和过程,结合土壤盐分表征状态,利用CRITIC赋权法构建了综合盐分指数、综合土壤指数、综合植被指数和综合地理指数,并采用AHP-熵权法组合权重法构建土壤盐渍化风险评估模型。监测发现:大荔县土壤盐渍化风险主要以轻度为主,其中2021年盐渍化风险等级较高,中度及以上盐渍化风险总面积达到近4 a最大值,占比约为50%。2020—2023年土壤盐渍化风险等级变化特征以风险升级型为主,且东部的黄河流域周边土壤盐渍化风险等级稳定性较差。耕地是治理分区内预警区和修复区的主要土地覆被类型,主要分布在大荔县东部。通过相关性验证发现土壤盐渍化风险评估结果与同期实测土壤电导率样点之间呈显著强相关关系,土壤盐渍化风险评估模型能够有效地表征大荔县土壤盐渍化时空演变特征。此外,土壤盐渍化风险加重主要受集中强降雨、气温升高、地下水位升高、地表蒸散量增加、农业生产等多因素的影响。因此,大荔县土壤盐渍化风险评估能够为精准、高效地治理盐渍土提供科学的理论依据及数据支撑,有效地促进农业生产结构调整及生态可持续发展。

本文引用格式

强欣欢 , 高文文 , 王博 , 谭剑波 , 赵旦 , 闫世勇 , 隋立春 . 基于遥感的土壤盐渍化风险评估及其演变规律[J]. 干旱区研究, 2025 , 42(3) : 431 -444 . DOI: 10.13866/j.azr.2025.03.04

Abstract

Assessment of the risk of soil salinization and associated monitoring are particularly significant for the precise management of saline soil and to ensure sustainable agricultural development. Taking Dali County as a focus, this study used the CRITIC weighting method to construct a comprehensive salt index, comprehensive soil index, comprehensive vegetation index, and comprehensive geographical index based on the soil salt driving mechanism and process, combined with the characterized soil salt state. It also used the analytic hierarchy process-entropy combined weight method to construct a model for assessing the risk of soil salinization. Monitoring revealed that the risk of soil salinization in Dali County is mainly mild, although the level of salinization risk in 2021 was relatively high. Meanwhile, the total area with salinization risk that is moderate or above peaked in the last four years, accounting for approximately 50% of the total. From 2020 to 2023, the changes in the level of soil salinization risk mainly involved risk escalation, and the stability of the soil salinization risk level around the Yellow River Basin in the east was relatively poor. Cultivated land is the main land cover type in the warning zone and restoration zone within the saline soil management zoning and both warning zone and restoration zone are mainly distributed in the eastern part of Dali County. Upon efforts to confirm the findings by determining the correlations between the soil salinization risk assessment results and the soil conductivity samples measured in the same period, there was a significant strong correlation between them. The model for assessing the risk of soil salinization can effectively characterize the spatiotemporal evolution of soil salinization in Dali County. In addition, the increased risk of soil salinization was shown to be mainly associated with multiple factors such as concentrated heavy rainfall, rising temperatures, rising groundwater levels, increased surface evapotranspiration, and agricultural production. Therefore, assessment of the risk of soil salinization in Dali County can provide a theoretical and scientific basis and data support for the precise and efficient management of saline soils and effectively promote the adjustment of agricultural production structure and achieve ecologically sustainable agricultural development.

参考文献

[1] 石聪, 陈礼瀚, 张怡菲, 等. 新疆小海子灌区耕地土壤盐渍化特征研究[J]. 干旱区地理, 2023, 46(8): 1314-1323.
  [Shi Cong, Chen Lihan, Zhang Yifei, et al. Soil salinization characteristics of cultivated land in Xiaohaizi Irrigation Area of Xinjiang[J]. Arid Land Geography, 2023, 46(8): 1314-1323.]
[2] Rengasamy P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57(5): 1017-1023.
[3] 刘梅先, 杨劲松. 土壤盐分的原位测定方法[J]. 土壤, 2011, 43(5): 688-697.
  [Liu Meixian, Yang Jinsong. In-situ determination methods for soil salinity[J]. Soils, 2011, 43(5): 688-697.]
[4] Elnaggar A A, Noller J S. Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas[J]. Remote Sensing, 2009, 2(1): 151-165.
[5] Wang H, Jia G. Satellite-based monitoring of decadal soil salinization and climate effects in a semiarid region of China[J]. Advances in Atmospheric Sciences, 2012, 29(5): 1089-1099.
[6] Kabiraj S, Jayanthi M, Vijayakumar S, et al. Comparative assessment of satellite images spectral characteristics in identifying the different levels of soil salinization using machine learning techniques in Google Earth Engine[J]. Earth Science Informatics, 2022, 15(4): 2275-2288.
[7] 洪国军, 谢俊博, 张灵, 等. 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024, 41(5): 894-904.
  [Hong Guojun, Xie Junbo, Zhang Ling, et al. Monitoring soil salinization of cotton fields in the Aral Reclamation Area using multispectral imaging[J]. Arid Zone Research, 2024, 41(5): 894-904.]
[8] Zixuan Z, Beibei N, Xinju L, et al. Estimation and dynamic analysis of soil salinity based on UAV and Sentinel-2A multispectral imagery in the coastal area, China[J]. Land, 2022, 11(12): 2307.
[9] Jiaqiang W, Jie P, Hongyi L, et al. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas, China[J]. Remote Sensing, 2021, 13(2): 305.
[10] Seydehmet J, Lv G H, Abliz A, et al. Irrigation salinity risk assessment and mapping in arid oasis, Northwest China[J]. Water, 2018, 10(7): 966.
[11] De Z, Jianchun X, Li W, et al. Identifying and managing risk factors for salt-affected soils: A case study in a semi-arid region in China[J]. Environmental Monitoring and Assessment, 2015, 187(7): 421.
[12] Jie B, Junli L, Anmin B, et al. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China[J]. Journal of Arid Land, 2021, 13(8): 814-834.
[13] 依力亚斯江·努尔麦麦提, 师庆东, 阿不都拉·阿不力孜, 等. 灰色评估模型定量评价于田绿洲土壤盐渍化风险[J]. 农业工程学报, 2019, 35(8): 176-184.
  [Ilyas Nurmemet, Shi Qingdong, Abdulla Abliz, et al. Quantitative evaluation of soil salinization risk in Keriya Oasis based on grey evaluation model[J]. Transactions of the Chinese Society of Agricultural Engineerin, 2019, 35(8): 176-184.]
[14] Wang Z, Zhang F, Zhang X, et al. Quantitative evaluation of spatial and temporal variation of soil salinization risk using GIS-based geostatistical method[J]. Remote Sensing, 2020, 12(15): 2405.
[15] Liu Y, Mu Z, Dong W, et al. Establishment of an evaluation indicator system and evaluation criteria for the Weihe River ecological watersheds[J]. Water, 2024, 16(17): 2393-2393.
[16] 张倩. 基于粒子群算法的大荔县农业水资源优化配置研究[D]. 西安: 西安理工大学, 2019.
  [Zhang Qian. Study Research on Optimal Allocation of Agricultural Water Resources in Dali County Based on Particle Swarm Optimization[D]. Xi’an: Xi’an University of Technology, 2019.]
[17] Wu J C, Gao W W, Zheng Z J, et al. Study of human activity intensity from 2015 to 2020 based on remote sensing in Anhui Province, China[J]. Remote Sensing, 2023, 15(8): 2029.
[18] 吴炳方. 中国土地覆被[M]. 北京: 科学出版社, 2017.
  [Wu Bingfang. Land Cover of China[M]. Beijing: Science Press, 2017.]
[19] 环境保护部. 土壤电导率的测定电极法(HJ 802-2016)[S]. 北京: 中国环境科学出版社, 2016.
  [Ministry of Environmental Protection. Soil Quality-determination of Conductivity-electrode Method[S]. Beijing: China Environmental Science Press, 2016.]
[20] 刘子金, 徐存东, 朱兴林, 等. 干旱荒漠区人工绿洲土壤盐碱化风险综合评估与演变分析[J]. 中国环境科学, 2022, 42(1): 367-379.
  [Liu Zijin, Xu Cundong, Zhu Xinglin, et al. Comprehensive assessment and evolution analysis of soil salinization in artificial oasis in arid desert area[J]. China Environmental Science, 2022, 42(1): 367-379.]
[21] 解雪峰, 濮励杰, 朱明, 等. 土壤水盐运移模型研究进展及展望[J]. 地理科学, 2016, 36(10): 1565-1572.
  [Xie Xuefeng, Pu Lijie, Zhu Ming, et al. Evolution and prospects in modeling of water and salt transport in soils[J]. Scientia Geographica Sinica, 2016, 36(10): 1565-1572.]
[22] Qi J W, Zhang Y C, Zhang J Q, et al. Research on the evaluation of geological environment carrying capacity based on the AHP-CRITIC empowerment method[J]. Land, 2022, 11(8): 1196-1196.
[23] Shekar P R, Mathew A. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: A case study in Peddavagu watershed, India[J]. Environmental Monitoring and Assessment, 2023, 195(7): 906.
[24] Gong J, Jin T T, Wang S M, et al. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China[J]. Ecological Indicators, 2022, 143(12): 109379.
[25] 李帆, 贾夏, 赵永华, 等. 基于DPSIR模型的黄土高原生态敏感性演变格局及驱动力分析[J]. 农业工程学报, 2023, 39(9): 241-251, 303.
  [Li Fan, Jia Xia, Zhao Yonghua, et al. Evolutionary pattern and driving forces of ecological sensitivity in the Loess Plateau using DPSIR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 241-251, 303.]
[26] 李相, 丁建丽, 侯艳军, 等. 干旱半干旱区土壤含盐量和电导率高光谱估算[J]. 冰川冻土, 2015, 37(4): 1050-1058.
  [Li Xiang, Ding Jianli, Hou Yanjun, et al. Estimating the soil salt content and electrical conductivity in semi-arid and arid areas by using hyperspectral data[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1050-1058.]
[27] 刘旭辉, 白云岗, 柴仲平, 等. 基于多光谱遥感的典型绿洲棉田春季土壤盐分反演及验证[J]. 干旱区地理, 2022, 45(4): 1165-1175.
  [Liu Xuhui, Bai Yungang, Chai Zhongping, et al. Inversion and validation of soil salinity based on multispectral remote sensing in typical oasis cotton field in spring[J]. Arid Land Geography, 2022, 45(4): 1165-1175.]
[28] Guo B, Lu M, Fan Y W, et al. A novel remote sensing monitoring index of salinization based on three-dimensional feature space model and its application in the Yellow River Delta of China[J]. Geomatics Natural Hazards & Risk, 2023, 14(1): 95-116.
[29] 王青, 李富程, 李国蓉, 等. 基于“压力-状态-响应”框架的长江上游防护林健康评价[J]. 长江流域资源与环境, 2010, 19(8): 953-958.
  [Wang Qing, Li Fucheng, Li Guorong, et al. Health assessment of protection forest based on pressure-state-response model[J]. Resources and Environment in the Yangtze Basin, 2010, 19(8): 953-958.]
[30] Zhang J, Cai J, Xu D, et al. Soil salinization poses greater effects than soil moisture on field crop growth and yield in arid farming areas with intense irrigation[J]. Journal of Cleaner Production, 2024, 451(32): 142007-142022.
[31] 蒋磊, 刘小龙, 郭帅, 等. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867.
  [Jiang Lei, Liu Xiaolong, Guo Shuai, et al. Evaluation of soil salinization susceptibility based on Logistic regression analysis: A case of Tarim irrigation area in southern Xinjiang[J]. Arid Land Geography, 2023, 46(11): 1858-1867.]
[32] 扶松林, 孔令颖, 周海香, 等. 泾河流域粮食产量与生产潜力时空分布特征及其与MODIS-GPP的关系[J]. 干旱地区农业研究, 2020, 38(6): 192-199.
  [Fu Songlin, Kong Lingying, Zhou Haixiang, et al. Spatial-temporal distribution characteristics of grain yield and its potential productivity in the Jing River Basin and their relationships with MODIS-GPP[J]. Agricultural Research in the Arid Areas, 2020, 38(6): 192-199.]
[33] 孔坚文, 王连喜, 李琪, 等. 陕西省主要农业气象灾害分析及其对粮食产量的影响[J]. 干旱地区农业研究, 2015, 33(4): 220-226.
  [Kong Jianwen, Wang Lianxi, Li Qi, et al. Analyses of main agro-meteorological disasters and their impacts on food production in Shaanxi Province[J]. Agricultural Research in the Arid Areas, 2015, 33(4): 220-226.]
[34] 宋喜芳, 姚海荣, 张小飞, 等. 陕西省粮食产量影响因素的灰色关联分析——基于面板数据的实证研究[J]. 中国农学通报, 2020, 36(28): 158-164.
  [Song Xifang, Yao Hairong, Zhang Xiaofei, et al. Grey correlation analysis of the influence factors of grain yield in Shaanxi: Empirical research based on panel data[J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 158-164.]
[35] 貟培东, 曾永年, 历华. 多尺度遥感影像融合技术及其算法研究进展[J]. 遥感信息, 2006(6): 67-71.
  [Yun Peidong, Zeng Yongnian, Li Hua. Advances in algorithms and techniques of multi-scale data fusion[J]. Remote Sensing Information, 2006(6): 67-71.]
[36] Shtiliyanova A, Bellocchi G, Borras D, et al. Kriging-based approach to predict missing air temperature data[J]. Computers and Electronics in Agriculture, 2017, 142(33): 440-449.
[37] Colombani N, Mastrocicco M, Giambastian B M S. Predicting salinization trends in a lowland coastal aquifer: Comacchio (Italy)[J]. Water Resources Management, 2015, 29(2): 603-618.
[38] Xudong Z, Changjian S, Manabu F, et al. Numerical and experimental study on water-heat-salt transport patterns in shallow bare soil with varying salt contents under evaporative conditions: A comparative investigation[J]. Journal of Hydrology, 2023, 621(61): 129564.
[39] 樊会敏, 许明祥, 李彬彬, 等. 渭北地区农田土壤物理性质对土壤剖面盐分的影响[J]. 水土保持学报, 2017, 31(4): 198-204.
  [Fan Huimin, Xu Mingxiang, Li Binbin, et al. Influence of soil physical properties on salt content in soil profile of farmland in Weibei Region[J]. Journal of Soil and Water Conservation, 2017, 31(4): 198-204.]
[40] 苏春利, 纪倩楠, 陶彦臻, 等. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923.
  [Su Chunli, Ji Qiannan, Tao Yanzhen, et al. Differentiation characteristics and main influencing factors of soil salinization in the West of Hetao Irrigation Area[J]. Arid Zone Research, 2022, 39(3): 916-923.]
[41] 赵起越, 夏夜, 邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119.
  [Zhao Qiyue, Xia Ye, Zou Bendong. Causes, hazards and rehabilitation of soil salinization[J]. Agriculture and Technology, 2022, 42(11): 115-119.]
[42] Khamidov M, Ishchanov J, Hamidov A, et al. Impact of soil surface temperature on changes in the groundwater level[J]. Water, 2023, 15(21): 3865.
[43] 杜秉晨曦, 程勇翔, 吴玲. 准噶尔盆地植被与土壤盐渍化关联性变化趋势分析[J]. 生态学报, 2021, 41(23): 9364-9376.
  [Du Bingchenxi, Cheng Yongxiang, Wu Ling. Analysis of negative correlation between vegetation and soil salinization in Junggar Basin[J]. Acta Ecologica Sinica, 2021, 41(23): 9364-9376.]
[44] 姚媛. 陕西农垦沙苑农场粮食丰产的秘诀是什么?[N]. 农民日报, 2024-07-10(007).
  [Yao Yuan. What is the secret of abundant grain production at Shaanxi Nongken Shayuan Farm?[N]. Farmers’ Daily, 2024-07-10(007).]
[45] 苏怡. “薄地”生金有良方[N]. 陕西日报, 2024-08-29(002).
  [Su Yi. There are good ways to make gold from ‘thin land’[N]. Shaanxi Daily, 2024-08-29(002).]
文章导航

/