天气与气候

基于相似误差订正方法的宁夏冬季气温模式产品解释应用

  • 王岱 ,
  • 马阳 ,
  • 张雯 ,
  • 李欣 ,
  • 黄莹 ,
  • 王素艳
展开
  • 1.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002
    2.宁夏回族自治区气候中心,宁夏 银川 750002
王岱(1990-),女,工程师,主要从事气候变化及短期气候预测研究. E-mail: wangd123@126.com
张雯. E-mail: acaimeme@sina.cn

收稿日期: 2024-07-15

  修回日期: 2024-11-18

  网络出版日期: 2025-02-21

基金资助

宁夏智能数字预报技术研究与应用科技创新团队(2024CXTD006);中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室开放研究项目(CAMF-202202);第七批宁夏回族自治区青年科技人才托举工程;宁夏自然科学基金项目(2023AAC03792)

Model explanation and application of winter temperature in Ningxia based on the similarity error correction method

  • WANG Dai ,
  • MA Yang ,
  • ZHANG Wen ,
  • LI Xin ,
  • HUANG Ying ,
  • WANG Suyan
Expand
  • 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, Ningxia, China
    2. Ningxia Hui Autonomous Region Climate Center, Yinchuan 750002, Ningxia, China

Received date: 2024-07-15

  Revised date: 2024-11-18

  Online published: 2025-02-21

摘要

冬季月和季节内频繁交替的冷暖事件增大了短期气候预测的难度和挑战性,加之气候动力模式对于宁夏冬季气温的预测水平整体不高,导致预测质量不稳定。动力与统计相结合的模式解释应用方法的发展,为预测质量的提升提供了有效的技术手段,也是省级短期气候预测业务亟须发展的重要方向。基于国家气候中心MODES二代产品的EC模式近30 a历史回算数据、宁夏19个国家气象站冬季逐月平均气温观测数据、NCEP/NCAR大气再分析资料等,采用相似误差订正方法,利用同期环流关键区信息对宁夏冬季月气温开展模式解释应用,旨在提高宁夏气候趋势预测准确率和客观化水平。结果表明:EC模式原始预测结果对宁夏冬季各月气温的预测技巧整体较高,尤其对于趋势和异常量级的把握能力较好;采用相似误差订正方案后,仍能有效提高EC模式对宁夏冬季气温的预测技巧,其中12月和1月预测技巧提高尤为明显,订正后PS、PC评分分别高于70%和64%。当1月平均气温为正距平、12月和2月为负距平时预测技巧提高更明显,气温偏低幅度越大提高越显著;模式误差大小对预报订正的效果无明显影响,即使在模式误差绝对值较大情况下,该订正方案仍能不同程度地提升冬季各月模式气温预测技巧。因此,相似误差订正方法可以在模式误差较大的情况下,进一步提高宁夏冬季气温趋势和异常量级的预报准确性,改进模式预报技巧的稳定性,在实际业务中具有良好的应用价值。

本文引用格式

王岱 , 马阳 , 张雯 , 李欣 , 黄莹 , 王素艳 . 基于相似误差订正方法的宁夏冬季气温模式产品解释应用[J]. 干旱区研究, 2025 , 42(2) : 236 -245 . DOI: 10.13866/j.azr.2025.02.05

Abstract

The frequent alternation of cold and warm events in the winter months has increased the difficulty and challenge of short-term climate prediction. Additionally, the overall prediction level of the climate dynamic models for winter temperatures in Ningxia was not high, resulting in an unstable prediction quality. The development of the model interpretation application method, combining dynamics and statistics, was effective in improving the prediction quality and is crucial for the urgent development of the provincial short-term climate prediction business. This article is based on the EC model historical calculations over the past 30 years of the MODES second-generation products of the National Climate Center, the monthly average winter temperatures observation data from 19 national meteorological stations in Ningxia, and the NCEP/NCAR atmospheric reanalysis data. Using the similarity error correction method, we combined the information of key circulation areas during the same period for model interpretation and application of winter temperatures to improve the accuracy and objectivity of climate trend prediction in Ningxia. The results revealed that the original prediction outcomes of the EC model have relatively high prediction skills for winter temperatures, especially regarding grasping trends and abnormal levels. After adopting a similar error correction scheme, the EC model can still effectively improve its prediction skills for winter temperatures in Ningxia, with a particularly significant improvement in December and January. After correction, the PS and PC scores were higher than 70% and 64%, respectively. Additionally, when the average temperature anomaly was positive in January and negative in December and February, the prediction skills improved more significantly; the larger the magnitude of the lower temperature, the more significant the improvement. Moreover, the magnitude of the model error did not significantly impact the forecast correction effect. Even when the absolute value of the model error was large, this correction scheme could still improve the winter monthly temperature prediction skills to varying degrees. Therefore, the similarity error correction method could further improve the forecast accuracy of the winter temperature trend and anomaly level in Ningxia under large model errors, improving the stability of the model forecast skill and providing a positive application value in practical service.

参考文献

[1] 贾小龙, 陈丽娟, 高辉, 等. 我国短期气候预测技术进展[J]. 应用气象学报, 2013, 24(6): 641-655.
  [Jia Xiaolong, Chen Lijuan, Gao Hui, et al. Advances of the short-range climate prediction in China[J]. Journal of Applied Meteorogical Science, 2013, 24(6): 641-655. ]
[2] 杨兴国. 宁夏气候与生态环境[M]. 北京: 气象出版社, 2021: 22-23.
  [Yang Xingguo. Ningxia Climate and Ecological Environment[M]. Beijing: Meteorological Press, 2021: 22-23. ]
[3] Goddard L, Mason S J, Zebiak S E, et al. Current approaches to seasonal-to-inter annual climate predictions[J]. International Journal of Climatology, 2001, 21(9): 1111-1152.
[4] 郑志海, 任宏利, 黄建平. 基于季节气候可预报分量的相似误差订正方法和数值实验[J]. 物理学报, 2009, 58(10): 7359-7367.
  [Zheng Zhihai, Ren Hongli, Huang Jianping. Analogue correction of errors based on seasonal climatic predictable components and numerical experiments[J]. Acta Physica Sinica, 2009, 58(10): 7359-7367. ]
[5] 任宏利, 丑纪范. 统计-动力相结合的相似误差订正法[J]. 气象学报, 2005, 63(6): 988-993.
  [Ren Hongli, Chou Jifan. Analogue correction method of errors by combining both statistical and dynamical methods together[J]. Acta Meteorologica Sinica, 2005, 63(6): 988-993. ]
[6] Gao L, Ren H L, Li J P, et al. Analogue correction method of errors and its application to numerical weather prediction[J]. Chinese Physics, 2006, 15(4): 882-889.
[7] 任宏利, 丑纪范. 动力相似预报的策略和方法研究[J]. 中国科学D辑: 地球科学, 2007, 37(8): 1101-1109.
  [Ren Hongli, Chou Jifan. Research on strategies and methods for dynamic similarity forecasting[J]. Scientia Sinica(Terrae), 2007, 37(8): 1101-1109. ]
[8] 李芳, 林中达, 左瑞亭, 等. 基于经验正交函数和奇异值分解对东亚季风区跨季度夏季降水距平的订正方法[J]. 气候与环境研究, 2005, 10(3): 658-668.
  [Li Fang, Lin Zhongda, Zuo Ruiting, et al. The methods for correcting the summer precipitation anomaly predicted extraseasonal over East Asian Monson Region based on EOF and SVD[J]. Climatic and Environmental Reasearch, 2005, 10(3): 658-668. ]
[9] 谭桂容, 段浩, 任宏利. 中高纬度地区500 hPa高度场动力预测统计订正[J]. 应用气象学报, 2012, 23(3): 304-311.
  [Tan Guirong, Duan Hao, Ren Hongli. Statistical correction for dynamical prediction of 500 hPa height field in mid-high latitudes[J]. Journal of Applied Meteorological Science, 2012, 23(3): 304-311. ]
[10] 程娅蓓, 任宏利, 谭桂容. 东亚夏季风模式跨季预测的EOF-相似误差订正[J]. 应用气象学报, 2016, 27(3): 285-292.
  [Cheng Yapei, Ren Hongli, Tan Guirong. Empirical orthogonal function-analogue correction of extra-seasonal dynamical prediction of East-Asian summer monsoon[J]. Journal of Applied Meteorological Science, 2016, 27(3): 285-292. ]
[11] 谭桂容, 王腾飞. 2011/2012年冬季中国气温异常的成因及前兆信号[J]. 大气科学学报, 2014, 37(1): 65-74.
  [Tan Guirong, Wang Tengfei. Causes and precursors of the winter temperature anomaly in China in 2011/2012[J]. Transactions of Atmospheric Sciences, 2014, 37(1): 65-74. ]
[12] 申红艳, 温婷婷, 封国林, 等. 中国冬季气温季节内变率特征及环流分析[J]. 气象, 2021, 47(3): 327-336.
  [Shen Hongyan, Wen Tingting, Feng Guolin, et al. Characteristics and circulation analysis of intraseasonal variability of winter temperature in China[J]. Meteorological Monthly, 2021, 47(3): 327-336. ]
[13] 谭桂容, 张文正. 中国冬季地面气温10-30 d低频变化及其与乌拉尔山环流的关系[J]. 大气科学学报, 2018, 41(4): 502-512.
  [Tan Guirong, Zhang Wenzheng. The 10-30 d low-frequency variation of winter surface air temperature in China and its relationship with Ural Mountain circulation[J]. Transactions of Atmospheric Sciences, 2018, 41(4): 502-512. ]
[14] 陈颖, 李维京, 史红政, 等. 北大西洋涛动对新疆冬季极端冷事件的影响[J]. 干旱区研究, 2019, 36(2): 348-355.
  [Chen Ying, Li Weijing, Shi Hongzheng, et al. Effects of NAO on the extreme cold events in Xinjiang in winter[J]. Arid Zone Research, 2019, 36(2): 348-355. ]
[15] 封国林, 赵俊虎, 支蓉, 等. 动力-统计客观定量化汛期降水预测研究新进展[J]. 应用气象学报, 2013, 24(6): 656-665.
  [Feng Guolin, Zhao Junhu, Zhi Rong, et al. Recent progress on the objective and quantifiable forecast of summer precipitation based on dynamical-statistical method[J]. Journal of Applied Meteorological Science, 2013, 24(6): 656-665. ]
[16] 程智, 段春锋, 邓淑梅. 多模式集合优选方案在淮河流域夏季降水预测中的应用[J]. 热带气象学报, 2017, 33(2): 241-249.
  [Cheng Zhi, Duan Chunfeng, Deng Shumei. Application of optimization scheme of multi-model ensemble in prediction of the Huaihe River Basin summer precipitation[J]. Journal of Tropical Meteorology, 2017, 33(2): 241-249. ]
[17] 姚愚, 晏红明. 多模式解释集成方法在云南降水预测中的应用[J]. 云南大学学报(自然科学版), 2020, 42(5): 926-935.
  [Yao Yu, Yan Hongming. Application of multi-mode interpretation and integration methods in precipitation prediction in Yunnan[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(5): 926-935. ]
[18] 王素艳, 李欣, 郑广芬, 等. 21世纪以来宁夏冬季气温异常及500 hPa环流特征[J]. 干旱气象, 2014, 32(4): 569-575.
  [Wang Suyan, Li Xin, Zheng Guangfen, et al. Temperature anomaly in winter in Ningxia after 2000 and the 500 hPa circulation feature[J]. Journal of Arid Meteorology, 2014, 32(4): 569-575. ]
[19] 王璠, 王素艳, 郑广芬, 等. 2016年宁夏冬季气温异常及其成因分析[J]. 干旱气象, 2020, 38(1): 22-31.
  [Wang Fan, Wang Suyan, Zheng Guangfen, et al. Analysis of temperature anomaly in winter of 2016 in Ningxia and its causes[J]. Journal of Arid Meteorology, 2020, 38(1): 22-31. ]
[20] 黄莹, 王素艳, 马阳, 等. 宁夏近60 a寒潮变化特征及其环流异常[J]. 干旱区研究, 2023, 40(11): 1718-1728.
  [Huang Ying, Wang Suyan, Ma Yang, et al. Change characteristics and circulation anomaly analysis of cold wave in Ningxia over the past 60 years[J]. Arid Zone Research, 2023, 40(11): 1718-1728. ]
[21] 赵天保, 符淙斌. 应用探空观测资料评估几类再分析资料在中国区域的适用性[J]. 大气科学, 2009, 33(3): 634-648.
  [Zhao Tianbao, Fu Congbin. Applicability evaluation for several reanalysis datasets using the upperair observations over China[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 634-648. ]
[22] 杨绚, 李栋梁, 汤绪. 基于CMIP5多模式集合资料的中国气温和降水预估及概率分析[J]. 中国沙漠, 2014, 34(3): 795-804.
  [Yang Xun, Li Dongliang, Tang Xu. Probability assessment of temperature and precipitation over China by CMIP5 multi-model ensemble[J]. Journal of Desert Research, 2014, 34(3): 795-804. ]
[23] 李开乐. 相似离度及其使用技术[J]. 气象学报, 1986, 44(2): 174-183.
  [Li Kaile. A new similarity parameter and its application[J]. Acta Meteorologica Sinica, 1986, 44(2): 174-183. ]
[24] 张立祥, 陈力强, 刘文明, 等. 东北区夏季月降水数值产品释用预报方法[J]. 应用气象学报, 2000, 11(3): 348-354.
  [Zhang Lixiang, Chen Liqiang, Liu Wenming, et al. Application of the numerical products of T63L16 Model for predicting monthly precipitation on summer over Northeast China[J]. Journal of Applied Meteorological Science, 2000, 11(3): 348-354. ]
[25] 何慧, 金龙, 覃志年, 等. 动力延伸预报产品在广西月降水预报中的应用[J]. 应用气象学报, 2007, 18(5): 727-731.
  [He Hui, Jing Long, Qin Zhinian, et al. Application of dynamic extended forecast products to monthly precipitation forecast in Guangxi[J]. Journal of Applied Meteorological Science, 2007, 18(5): 727-731. ]
[26] 李博, 赵思雄, 陆汉城, 等. 综合多级相似预报技术在暴雨短期预报中的检验[J]. 应用气象学报, 2008, 19(3): 307-314.
  [Li Bo, Zhao Sixiong, Lu Hancheng, et al. Test of the synthetical multilevel analog forecast technology in short-term rainstorm prediction[J]. Journal of Applied Meteorological Science, 2008, 19(3): 307-314. ]
[27] Michaelsen J. Cross-validation in statistical climate forecast models[J]. Journal of Climate and Applied Meteorology, 1987, 26(11): 1589-1600.
[28] 陈桂英, 赵振国. 短期气候预测评估方法和业务初估[J]. 应用气象学报, 1998, 9(2): 178-185.
  [Chen Guiying, Zhao Zhenguo. Assessment methods of short range climate prediction and their operational application[J]. Quarterly Journal of Applied Meteorology, 1998, 9(2): 178-185. ]
[29] 何慧根, 李巧萍, 吴统文, 等. 月动力延伸预测模式业务系统DERF 2.0对中国气温和降水的预测性能评估[J]. 大气科学, 2014, 38(5): 950-964.
  [He Huigen, Li Qiaoping, Wu Tongwen, et al. Temperature and precipitation evaluation of monthly dynamic extended range forecast operational system DERF 2.0 in China[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 950-964. ]
[30] Ren Hongli, Chou Jifan, Huang Jianping, et al. Theoretical basis andapplication of an analogue-dynamical model in the Lorenz system[J]. Advances in Atmospheric Sciences, 2009, 26(1): 67-77.
[31] 李雪洮, 段春锋, 杨智敏, 等. SEAS5模式对新疆月尺度气温和降水的预测性能评估[J]. 沙漠与绿洲气象, 2022, 16(5): 31-38.
  [Li Xuetao, Duan Chunfeng, Yang Zhimin, et al. Monthly temperature and precipitation evaluation of SEAS5 in Xinjiang[J]. Desert and Oasis Meteorology, 2022, 16(5): 31-38. ]
[32] 龚志强, 赵俊虎, 封国林, 等. 基于年代际突变分量的东亚夏季降水动力-统计预报方案研究[J]. 中国科学: 地球科学, 2015, 45(2): 236-252.
  [Gong Zhiqiang, Zhao Junhu, Feng Guolin, et al. Dynamic-statistics combined forecast scheme based on the abrupt decadal change component of summer precipitation in East Asia[J]. Science China: Earth Sciences, 2015, 45(2): 236-252. ]
[33] Maraun D, Widmann M. Statistical Downscaling and Bias Correction for Climate Research[M]. Cambridge: Cambridge University Press, 2017: 25-28.
[34] Fang Y H, Chen H S, Gong Z Q, et al. Multi-scheme corrected dynamic-analogue prediction of summer precipitation in northeastern China based on BCC_CSM[J]. Journal of Meteorological Research, 2017, 31(6): 1085-1095.
[35] Liu Y, Fan K, Chen L J, et al. An operational statistical downscaling prediction model of the winter monthly temperature over China based on a multi-model ensemble[J]. Atmospheric Research, 2021, 249: 105262.
文章导航

/