天气与气候

昆仑山北坡西段和中段暴雨的特征及差异

  • 杨霞 ,
  • 杨柳
展开
  • 1.新疆维吾尔自治区气象台,新疆 乌鲁木齐 830002
    2.巴音郭楞蒙古自治州气象局,新疆 库尔勒 841000
杨霞(1980-),女,硕士,正高级工程师,主要研究方向为灾害性天气机理. E-mail: yangxia921@163.com

收稿日期: 2024-10-17

  修回日期: 2024-11-28

  网络出版日期: 2025-02-21

基金资助

自治区“天山英才”培养计划(2023TSYCCX0077);国家自然科学基金项目(42065001)

Characteristics and differences in heavy rainfall in the western and central sections of the northern slope of the Kunlun Mountains

  • YANG Xia ,
  • YANG Liu
Expand
  • 1. Xinjiang Uygur Autonomous Region Meteorological Observatory, Urumqi 830002, Xinjiang, China
    2. Bayingol Mongolian Autonomous Prefecture Meteorological Bureau, Korla 841000, Xinjiang, China

Received date: 2024-10-17

  Revised date: 2024-11-28

  Online published: 2025-02-21

摘要

利用1961—2023年昆仑山北坡国家气象站的降水资料和再分析资料,揭示了昆仑山北坡西段和中段暴雨的特征和差异。结果表明:(1)1961—2023年,昆仑山北坡西段和中段的暴雨日数及暴雨量均呈增加趋势,且西段增加得更显著;西段的累积暴雨日数和累积暴雨量均多于中段;但二者的极值雨量差异不大;西段在暖湿阶段的暴雨量多于暖干阶段,而中段则相反,二者对气候转型的响应程度不同。(2)暴雨日数和暴雨量的空间分布在昆仑山北坡西段均呈“东多西少”的特征,在中段则均呈“中间多两边少”的特征;平均暴雨量与累积暴雨量的空间分布在西段一致,在中段相反。(3)2010—2023年,昆仑山北坡超过90%的国家站都出现过短时强降水暴雨,该比例高于南疆平均值;西段整体(中段)以非短时(短时)强降水暴雨为主。昆仑山北坡暴雨的持续性较差,且夜雨居多,西段和中段暴雨的平均降水时数接近。(4)造成昆仑山北坡西段和中段暴雨的主要天气系统的典型配置相同,导致昆仑山北坡暴雨的精细落区预报难度加大。研究结果可加深对干旱区暴雨独特性的认识,并为提高昆仑山北坡暴雨防御能力提供参考。

本文引用格式

杨霞 , 杨柳 . 昆仑山北坡西段和中段暴雨的特征及差异[J]. 干旱区研究, 2025 , 42(2) : 202 -211 . DOI: 10.13866/j.azr.2025.02.02

Abstract

The north slope of the Kunlun Mountains is an essential corridor for the construction of the core area of the Silk Road Economic Belt. It is located in the inland arid zone of Northwest China, where torrential rains are sudden, short-lived, and disaster-heavy. In the actual forecasting operations, there are more empty reports and omissions of torrential rains in the north slope of the Kunlun Mountains, which leads to insufficient disaster defense in this region. This study used precipitation and reanalysis data from the national meteorological stations on the north slope of the Kunlun Mountains from 1961 to 2023 to reveal the characteristics of long-term changes in heavy rainfall in different regions of the north slope of the Kunlun Mountains and the differences in circulation. The results revealed that (1) from 1961 to 2023, the number of heavy rain days and the amount of heavy rainfall in the western and central sections of the northern slope of the Kunlun Mountains exhibited an increasing trend, with the western section exhibiting a more pronounced increase. The cumulative number of heavy rain days and heavy rainfall in the western section was greater than in the central section. However, the difference in extreme rainfall amounts between the two sections was not significant. In the western section, the amount of heavy rainfall during the warm and humid phase was greater than that during the warm and dry phase, while the opposite was observed for the central section, indicating different levels of response to climate transitions. (2) the spatial distribution of heavy rain days and heavy rainfall volumes on the western section of the northern slope exhibited a characteristic of “more in the east and less in the west,” while the central section displayed a pattern of “more in the middle and less on the sides.” The spatial distribution of average heavy rainfall and cumulative heavy rainfall volumes is consistent in the western section but opposite in the central section. (3) over 90.0% of the stations on the northern slope of the Kunlun Mountains have experienced short-duration heavy rainfall events, which is higher than the average for southern Xinjiang; nonshort-duration heavy rainfall events predominantly characterize the western section (central section). The persistence of heavy rainfall events on the northern slope is relatively poor, with a majority occurring at night, and the average precipitation duration of heavy rainfall events in the western and central sections is similar. (4) the typical configuration of the main weather systems causing heavy rainfall in the western and central sections of the northern slope is the same, which increases the difficulty of precise forecasting for the fine-scale distribution of heavy rainfall in the Kunlun Mountains. The research findings can deepen our understanding of the uniqueness of heavy rainfall in arid regions and provide references for enhancing the defense capabilities against heavy rainfall on the northern slope of the Kunlun Mountains.

参考文献

[1] 郑度, 潘裕生, 武素功, 等. 昆仑山区综合科学考察的新进展[J]. 山地研究, 1989, 7(2): 111-115.
  [Zheng Du, Pan Yusheng, Wu Sugong, et al. Recent progresses of the integrated scientific expedition of the Kunlun Mountains[J]. Mountain Research, 1989, 7(2): 111-115. ]
[2] 孙鸿烈, 郑度. 喀喇昆仑山—昆仑山地区综合科学考察[J]. 中国科学基金, 1990(2): 1-6.
  [Sun Honglie, Zheng Du. Comprehensive scientific investigation on the Korra Kunlun-Kunlun Mountain areas[J]. Bulletin of National Natural Science Foundation of China, 1990(2): 1-6. ]
[3] 达伟, 王书峰, 沈永平, 等. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55.
  [Da Wei, Wang Shufeng, Shen Yongping, et al. Hydrological response to the climatic changes in the Qarqan River Basin at the northern slope of Kunlun Mountains during 1957-2019[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 46-55. ]
[4] Duan Yongchao, Liu Tie, Meng Fanhao, et al. Accurate simulation of ice and snow runoff for the mountainous terrain of the Kunlun Mountains, China[J]. Remote Sensing, 2020, 12: 179.
[5] Song Lingling, Xu Changchun, Long Yunxia, et al. Performance of seven gridded precipitation products over arid central asia and subregions[J]. Remote Sensing, 2022, 14: 6039.
[6] 韩兴胜. 中昆仑山北坡降水量变化特征分析[J]. 人民长江, 2017, 48(S2): 85-88.
  [Han Xingsheng. Characteristics of precipitation variation on the northern slope of central Kunlun Mountain[J]. Yangtze River, 2017, 48(S2): 85-88. ]
[7] 许有鹏, 高蕴珏, 杨戍. 昆仑山北坡河流水文水资源特征研究[J]. 地理科学, 1994, 14(4): 338-346, 390.
  [Xu Youpeng, Gao Yunyu, Yang Wu. Approach to water resource characteristics of rivers in north slope area of the Kunlun Mountains[J]. Scientia Geographica Sinica, 1994, 14(4): 338-346, 390. ]
[8] 张俊兰, 杨霞, 肖俊安, 等. 昆仑山北部夏季降水多尺度时空变化特征[J]. 高原山地气象研究, 2023, 43(3): 1-10.
  [Zhang Junlan, Yang Xia, Xiao Jun’an, et al. Multi-scale temporal and spatial variation characteristics of summer precipitation in northern Kunlun Mountains[J]. Plateau and Mountain Meteorology Research, 2023, 43(3): 1-10. ]
[9] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
  [Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164. ]
[10] 谢泽明, 周玉淑, 杨莲梅. 新疆降水研究进展综述[J]. 暴雨灾害, 2018, 37(3): 204-212.
  [Xie Zeming, Zhou Yushu, Yang Lianmei. Review of study on precipitation in Xinjiang[J]. Torrential Rain and Disasters, 2018, 37(3): 204-212. ]
[11] 杨霞, 周鸿奎, 许婷婷, 等. 南疆夏季不同类型暴雨精细化特征对比分析[J]. 干旱区研究, 2021, 38(3):747-756.
  [Yang Xia, Zhou Hongkui, Xu Tingting, et al. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer[J]. Arid Zone Research, 2021, 38(3): 747-756. ]
[12] 张俊兰, 杨霞, 施俊杰. 青藏高原天气系统对昆仑山北坡一次罕见暴雨过程影响分析[J]. 高原气象, 2021, 40(5): 1002-1011.
  [Zhang Junlan, Yang Xia, Shi Junjie. Analysis of the influence of the Qinghai-Xizang Plateau weather system on a rare rainstorm process on the northern slope of Kunlun Mountain[J]. Plateau Meteorology, 2021, 40(5): 1002-1011. ]
[13] 张俊兰, 李伟, 郑育琳. 昆仑山北坡短时强降水天气分型及雷达回波特征分析[J]. 沙漠与绿洲气象, 2022, 16(1): 1-9.
  [Zhang Junlan, Li Wei, Zheng Yulin. Weather classification and radar echo characteristics of short-term heavy precipitation in the northern Kunlun Mountains[J]. Desert and Oasis Meteorology, 2022, 16(1): 1-9. ]
[14] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987: 400.
  [Zhang Jiabao, Deng Zifeng. Introduction to Precipitation in Xinjiang[M]. Beijing: China Meteorological Press, 1987: 400. ]
[15] 杨霞, 许婷婷, 张林梅, 等. 不同气候背景下南疆暖季暴雨特征和差异[J]. 干旱气象, 2022, 40(2): 222-233.
  [Yang Xia, Xu Tingting, Zhang Linmei, et al. Characteristics and differences of rainstorm in the southern Xinjiang during warm season under different climatic backgrounds[J]. Journal of Arid Meteorology, 2022, 40(2): 222-233. ]
[16] 杨霞, 张云惠, 张超, 等. 南疆西部“5·21”极端大暴雨成因分析[J]. 沙漠与绿洲气象, 2020, 14(1): 21-30.
  [Yang Xia, Zhang Yunhui, Zhang Chao, et al. Causation analysis of the 21 May 2018 torrential rain in the west of southern Xinjiang[J]. Desert and Oasis Meteorology, 2020, 14(1): 21-30. ]
[17] 李晓萌, 杨莲梅, 李建刚, 等. 昆仑山北坡“6·14”极端暴雨过程的中尺度对流系统特征分析[J]. 干旱区地理, 2024, 10(47): 1700-1712.
  [Li Xiaomeng, Yang Lianmei, Li Jiangang, et al. Mesoscale convective systems characteristic analysis of the “6·14” extreme rainstorm in northern slope of the Kunlun Mountains[J]. Arid Land Geography, 2024, 10(47): 1700-1712. ]
[18] Sun Qi, Abuduwaili Abulikemu, Yao Junqiang, et al. A case study on the convection initiation mechanisms of an extreme rainstorm over the northern slope of Kunlun Mountains, Xinjiang, Northwest China[J]. Remote Sensing, 2023, 15: 4505.
[19] 杨霞, 何清, 赵克明, 等. 基于加密探空资料的塔里木东风低空急流特征[J]. 山地学报, 2023, 41(6):836-845.
  [Yang Xia, He Qing, Zhao Keming, et al. Characteristics of the easterly low-level jet in Tarim based on encrypted radiosonde observations[J]. Mountain Research, 2023, 41(6): 836-845. ]
[20] 于碧馨, 刘晶, 安大维, 等. 2017—2019年南疆西部和昆仑山北坡GPS大气可降水量变化特征[J]. 沙漠与绿洲气象, 2022, 16(6):25-33.
  [Yu Bixin, Liu Jing, An Dawei, et al. Variation characteristics of GPS precipitable water vapor over the west of southern Xinjiang and the northern slope of Kunlun Mountains during 2017-2019[J]. Desert and Oasis Meteorology, 2022, 16(6): 25-33. ]
[21] 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展[J]. 气象学报, 2014, 72(5): 948-968.
  [Yu Rucong, Li Jian, Chen Haoming, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Acta Meteorological Sinica, 2014, 72(5): 948-968. ]
[22] 崔彩霞, 李扬, 杨青. 新疆夜雨和昼雨的空间分布和长期变化[J]. 中国沙漠, 2008, 28(5): 903-909.
  [Cui Caixia, Li Yang, Yang Qing. Spatial distribution and long-term variation of nocturnal and daytime rainfall in Xinjiang[J]. Journal of Desert Research, 2008, 28(5): 903-909. ]
[23] 钱永甫, 张琼, 张学洪. 南亚高压与我国盛夏气候异常[J]. 南京大学学报(自然科学版), 2002, 38(3): 295-307.
  [Qian Yongfu, Zhang Qiong, Zhang Xuehong. The South Asian high and its effects on China’s mid-summer climate abnormality[J]. Journal of Nanjing University(Natural Sciences), 2002, 38(3): 295-307. ]
[24] Yao Junqiang, Chen Yaning, Guan Xuefeng, et al. Recent climate ang hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957.
[25] 毛炜峄, 玉素甫·阿布都拉, 程鹏, 等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土, 2007, 29(4): 553-558.
  [Mao Weiyi, Yusupu Abudula, Cheng Peng, et al. Extreme flood events in 1999 and their formation conditions in northern slopes of the Middle Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 553-558. ]
[26] Li Man, Zhang Zaiyong, Ju Chenxiang, et al. Sensitivity of temperature and precipitation characteristics to land use classification over the Taklimakan Desert and surrounding area[J]. Theoretical and Applied Climatology, 2023, 154: 987-998.
[27] Li Jiawei, Sun Meiping, Yao Xiaojun, et al. A review of Karakoram glacier anomalies in high mountains asia[J]. Water, 2023, 15: 3215.
[28] Niu Shuting, Sun Meiping, Wang Guoyu, et al. Glacier change and its influencing factors in the northern part of the Kunlun Mountains[J]. Remote Sensing, 2023, 15: 3986.
文章导航

/