新疆大气可降水量时空演变特征及其与降水转化关系
收稿日期: 2024-06-23
修回日期: 2025-01-05
网络出版日期: 2025-02-21
基金资助
国家自然科学基金项目(52269007);新疆维吾尔自治区重点研发计划项目(2022B03024-4);新疆水利工程安全与水灾害防治重点实验室实践创新项目(ZDSYS-YJS-2023-15)
Spatial and temporal evolution characteristics of atmospheric precipitable water vapor in Xinjiang and its relationship with precipitation conversion
Received date: 2024-06-23
Revised date: 2025-01-05
Online published: 2025-02-21
大气可降水量(PWV)是表征大气中水汽含量的重要指示因子,明确PWV与降水的转化机制对水资源高效利用具有重要意义。本文以新疆为研究区,基于多源数据计算PWV,并以探空数据为参考,评估ERA5全球大气再分析数据计算PWV的优劣,借助降水转换率(PCE)揭示PWV与降水的转化关系。结果表明:(1)ERA5计算的PWV精度较高,与传统依托探空数据确定的PWV的相关系数和均方根误差分别为0.98和2.6 mm。(2)1960—2020年新疆PWV总体呈增加趋势,增幅为0.1 mm·(10a)-1;小波频谱显示研究区PWV变化周期以短周期为主,分别为2.6 a、6 a。(3)从点尺度来看,PCE随站点降水量的增加而升高;从线尺度来看,PCE的变化规律在经度方向上呈“U”型,在纬度方向上大致呈“L”型;从面尺度来看,PCE的高值区主要分布在林地、坡度为25°~35°范围及海拔5000 m以上的区域,分别为7.17%、5.8%和5.1%;(4)降水丰枯异常典型年PCE差异明显,辐合强、水汽上升运动强烈的特丰水年,引起了较高的PCE,平、枯水年PCE较低。(5)北极涛动指数和太平洋十年振荡是影响全疆PCE的主要因素,由于不同区域间因气候和地形等因素的差异,PCE受控因子存在一定的差异。研究结果可为新疆地区空中水资源利用及降水转化评估提供理论参考。
赵世康 , 穆振侠 , 李刚 , 杨荣钦 , 黄娩婷 . 新疆大气可降水量时空演变特征及其与降水转化关系[J]. 干旱区研究, 2025 , 42(2) : 191 -201 . DOI: 10.13866/j.azr.2025.02.01
Atmospheric Precipitable Water Vapor (PWV) is an important indicator to characterize the water vapor content in the atmosphere, and clarifying the conversion mechanism between PWV and precipitation is of great significance for efficient water resource utilization. This paper takes Xinjiang as the study area, calculates PWV based on multi-source data, and evaluates the advantages and disadvantages of ERA5 global atmospheric reanalysis data for calculating PWV using radiosounde data as reference, and reveals the conversion relationship between PWV and precipitation with the help of Precipitation Conversion Efficient (PCE). The results show that (1) The PWV calculated by ERA5 has a high accuracy, with correlation coefficients and root mean square errors of 0.98 and 2.6 mm, respectively, compared to the PWV determined by traditional radiosounde data dependent methods. (2) Overall increasing trend of PWV in Xinjiang from 1960-2020, with an increase of 0.1 mm·(10a)-1; the wavelet spectrum shows that the period of PWV change in the study area is dominated by the short period, which is 2.6 a and 6 a, respectively. (3) From a point perspective, PCE increases with increasing precipitation at the station. From a line perspective, the pattern of change in PCE is “U” type in the direction of longitude and roughly “L” type in the direction of latitude. At the surface scale, the high value areas of PCE were mainly distributed in the forested land, the slope range of 25°-35° and the area above 5000 m above sea level, which were 7.17%, 5.8% and 5.1%, respectively. (4) Typical years of precipitation abundance anomalies vary significantly in PCE, with exceptionally abundant years with strong convergence and strong upward movement of water vapor giving rise to higher PCE, and flat and dry water years with lower PCE. (5) Arctic Oscillation Index and Pacific Decadal Oscillation are the main factors affecting the PCE in the whole of Xinjiang, and there are some differences in the PCE controlled factors among different regions due to differences in climate and topography. The results of the study can provide theoretical references for airborne water resource utilisation and precipitation conversion assessment in Xinjiang.
[1] | 王朋, 石玉立. 青海地区TRMM 3B43降水产品融合降尺度与时空特征分析[J]. 干旱区地理, 2024, 47(7): 1136-1146. |
[Wang Peng, Shi Yuli. Fused-downscaling framework and spatiotemporal characteristics of TRMM 3B43 precipitation product in the Qinghai region[J]. Arid Land Geography, 2024, 47(7): 1136-1146. ] | |
[2] | 潘锋, 何大明, 曹杰, 等. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1): 87-100. |
[Pan Feng, He Daming, Cao Jie, et al. Multiple branches of water vapor transport over the Nujiang River Basin in summer and its impact on precipitation[J]. Acta Geographica Sinica, 2023, 78(1): 87-100. ] | |
[3] | 马新平, 尚可政, 李佳耘, 等. 1981—2010年中国西北地区东部大气可降水量的时空变化特征[J]. 中国沙漠, 2015, 35(2): 448-455. |
[Ma Xinping, Shang Kezheng, Li Jiayun, et al. Spatial and temporal changes of atmospheric precipitable water in the eastern part of Northwest China from 1981 to 2010[J]. Journal of Desert Research, 2015, 35(2): 448-455. ] | |
[4] | 刘蕊, 杨青, 王敏仲. 再分析资料与经验关系计算的新疆地区大气水汽含量比较分析[J]. 干旱区资源与环境, 2010, 24(4): 77-85. |
[Liu Rui, Yang Qing, Wang Minzhong. Intercomparison and analysis of the result about atmospheric precipitable water caculated by NCEP reanalysis and empirical formula[J]. Journal of Arid Land Resources and Environment, 2010, 24(4): 77-85. ] | |
[5] | 强安丰, 魏加华, 解宏伟, 等. 三江源区大气水汽含量时空特征及其转化变化[J]. 水科学进展, 2019, 30(1): 14-23. |
[Qiang Anfeng, Wei Jiahua, Xie Hongwei, et al. Spatial-temporal characteristics and changes of atmospheric water vapor in the Three River Headwaters region[J]. Advances in Water Science, 2019, 30(1): 14-23. ] | |
[6] | 杨红梅, 葛润生, 徐宝祥. 用单站探空资料分析对流层气柱水汽总量[J]. 气象, 1998, 24(9): 9-12. |
[Yang Hongmei, Ge Runsheng, Xu Baoxiang. Analysis of total water vapor in tropospheric gas column using single station sounding data[J]. Meteorology, 1998, 24(9): 9-12. ] | |
[7] | Alshawaf F, Fuhrmann T, Knopfler A, et al. Accurate estimation of atmospheric water vapor using GNSS observations and surface meteorological data[J]. Geoscience and Remote Sensing, 2015, 53(7): 3764-3771. |
[8] | 杨景梅, 邱金桓. 我国可降水量同地面水汽压关系的经验表达式[J]. 大气科学, 1996, 20(5): 620-626. |
[Yang Jingmei, Qiu Jinhuan. The empirical expression of the relation between precipitable water and ground water vapor pressure for some areas in China[J]. Chinese Journal of Atmospheric Sciences, 1996, 20(5): 620-626. ] | |
[9] | Wang Z, Chen P, Wang R, et al. Performance of ERA5 data in retrieving precipitable water vapor over Hong Kong[J]. Advances in Space Research, 2023, 71(10): 4055-4071. |
[10] | Zhang W, Zhang H, Liang H, et al. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China[J]. Journal of Geodesy, 2019, 93: 1897-1909. |
[11] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164. |
[Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Sciences, 2003, 23(2): 152-164. ] | |
[12] | 董翰林, 王文婷, 谢云, 等. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884. |
[Dong Hanlin, Wang Wenting, Xie Yun, et al. Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023, 40(12): 1875-1884. ] | |
[13] | Tian J, Zhang Z, Zhao T, et al. Warmer and wetter climate induced by the continual increase in atmospheric temperature and precipitable water vapor over the arid and semi-arid regions of Northwest China[J]. Journal of Hydrology: Regional Studies, 2022, 42: 101151. |
[14] | 张玉欣, 马学谦, 韩辉邦, 等. 2014—2018年青海省云水资源时空分布特征[J]. 干旱区研究, 2021, 38(5): 1254-1262. |
[Zhang Yuxin, Ma Xueqian, Han Huibang, et al. Analysis of spatial and temporal distribution characteristics of cloud water resources in Qinghai Province from 2014 to 2018[J]. Arid Zone Research, 2021, 38(5): 1254-1262. ] | |
[15] | 李进, 李栋梁, 张杰. 黄河流域夏季有效降水转化率[J]. 水科学进展, 2012, 23(3): 346-354. |
[Li Jin, Li Dongliang, Zhang Jie. Research on summer effective precipitation conversion rate over the Yellow River Basin[J]. Advances in Water Science, 2012, 23(3): 346-354. ] | |
[16] | 王娜, 顾伟宗, 邱粲, 等. 山东夏季空中水汽分布和水汽输送特征[J]. 高原气象, 2021, 40(1): 159-168. |
[Wang Na, Gu Weizong, Qiu Can, et al. Characteristics of atmospheric water vapor distribution and transport during summer over Shandong Province[J]. Plateau Meteorology, 2021, 40(1): 159-168. ] | |
[17] | 李帅, 谢国辉, 何清, 等. 阿勒泰地区降水量、可降水量及降水转化率分析[J]. 冰川冻土, 2008, 30(4): 675-680. |
[Li Shuai, Xie Guohui, He Qing, et al. Research on precipitation, precipitable water and the precipitation conversion efficiency of Altay Prefecture[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 675-680. ] | |
[18] | 周顺武, 吴萍, 王传辉, 等. 青藏高原夏季上空水汽含量演变特征及其与降水的关系[J]. 地理学报, 2011, 66(11): 1466-1478. |
[Zhou Shunwu, Wu Ping, Wang Chuanhui, et al. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. Acta Geographica Sinica, 2011, 66(11): 1466-1478. ] | |
[19] | 范雪薇, 刘海隆, 赵文宇, 等. 基于NCEP资料新疆降水转化率的研究[J]. 石河子大学学报(自然科学版), 2016, 34(3): 372-378. |
[Fan Xuewei, Liu Hailong, Zhao Wenyu, et al. Analysis of precipitation conversion in Xinjiang based on NCEP data[J]. Journal of Shihezi University(Natural Science), 2016, 34(3): 372-378. ] | |
[20] | 许超杰, 窦燕, 孟琪琳. 基于EMD-GWO-LSTM模型的新疆标准化降水蒸散指数预测方法研究[J]. 干旱区研究, 2024, 41(4): 527-539. |
[Xu Chaojie, Dou Yan, Meng Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model[J]. Arid Zone Research, 2024, 41(4): 527-539. ] | |
[21] | 虞佳陆, 张景, 张敏, 等. 基于标准化前期降水蒸散指数的新疆干旱时空演变特征[J]. 干旱地区农业研究, 2023, 41(4): 275-288. |
[Yu Jialu, Zhang Jing, Zhang Min, et al. SAPEI-Based spatial and temporal variation characteristics of drought in Xinjiang[J]. Agricultural Research in the Arid Areas, 2023, 41(4): 275-288. ] | |
[22] | Zhang R, Yuan Y, Gou X, et al. Tree-ring-based moisture variability in western Tianshan Mountains since A.D. 1882 and its possible driving mechanism[J]. Agricultural Forest Meteorology, 2016, 218: 267-276. |
[23] | He B, Chang J, Wang Y, et al. Spatio-temporal evolution and non-stationary characteristics of meteorological drought in inland arid areas[J]. Ecological Indicators, 2021, 126: 107644. |
[24] | 赵玲, 安沙舟, 杨莲梅, 等. 1976—2007年乌鲁木齐可降水量及其降水转化率[J]. 干旱区研究, 2010, 27(3): 433-437. |
[Zhao Ling, An Shazhou, Yang Lianmei, et al. Study on precipitable water and precipitation conversion efficiency in Urumqi during the period of 1976-2007[J]. Arid Zone Research, 2010, 27(3): 433-437. ] | |
[25] | 李霞, 张广兴. 天山可降水量和降水转化率的研究[J]. 中国沙漠, 2003, 23(5): 33-37. |
[Li Xia, Zhang Guangxin. Research on precipitable water and precipitation conversion efficiency around Tianshan Mountain Area[J]. Journal of Desert Research, 2003, 23(5): 33-37. ] | |
[26] | Wang Q, Wang X, Zhou Y, et al. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm[J]. Sustainable Cities and Society, 2022, 79: 103722. |
[27] | 姚俊强. 新疆空中水资源和地表水资源变化特征研究[J]. 干旱区研究, 2024, 41(2): 181-190. |
[Yao Junqiang. Change in atmospheric and surface water resource in Xinjiang[J]. Arid Zone Research, 2024, 41(2): 181-190. ] | |
[28] | 王鹏祥, 何金海, 郑有飞, 等. 夏季北极涛动与西北夏季干湿特征的年代际关系[J]. 中国沙漠, 2007, 27(5): 883-889. |
[Wang Pengxiang, He Jinhai, Zheng Youfei, et al. Inter-decadal relationships between summer Arctic Oscillation and aridity-wetness feature in Northwest China[J]. Journal of Desert Research, 2007, 27(5): 883-889. ] | |
[29] | Ma Z. The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO)[J]. Chinese Science Bulletin, 2007, 52(15): 2130-2139. |
[30] | 贾艳青, 张勃. 近57年中国北方气候干湿变化及与太平洋年代际振荡的关系[J]. 土壤学报, 2019, 56(5): 1085-1097. |
[Jia Yanqing, Zhang Bo. Relationship of dry-wet climate changes in Northern China in the past 57 years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica, 2019, 56(5): 1085-1097. ] | |
[31] | 从靖, 赵天保, 马玉霞. 中国北方干旱半干旱区降水的多年代际变化特征及其与太平洋年代际振荡的关系[J]. 气候与环境研究, 2017, 22(6): 643-657. |
[Cong Jing, Zhao Tianbao, Ma Yuxia. Multi-decadal variability of precipitation in arid and semi-arid region of Northern China and its relationship with Pacific Decadal Oscillation index[J]. Climatic and Environmental Research, 2017, 22(6): 643-657. ] | |
[32] | Liu K, Xu K, Zhu C, et al. Diversity of marine heatwaves in the South China sea regulated by ENSO phase[J]. Journal of Climate, 2022, 35(2): 877-893. |
/
〈 |
|
〉 |