ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析
收稿日期: 2024-08-23
修回日期: 2024-10-10
网络出版日期: 2025-01-17
基金资助
新疆“天山英才”培养计划(2023TSYCCX0077);国家自然科学基金(42065001);国家自然科学基金(2023年“新疆气象高层次骨干人才”计划)
Analysis of the forecast performance of the ECMWF Model for the diurnal variation characteristics of summer precipitation on the northern slope of the Kunlun Mountains
Received date: 2024-08-23
Revised date: 2024-10-10
Online published: 2025-01-17
昆仑山北坡地形复杂,降水日变化特征独特导致其降水精细化预报难度大,准确率低。ECMWF模式的整体预报性能世界领先,但其对昆仑山北坡复杂地形下降水日变化特征的预报能力尚不明确。本文利用2020—2023年夏季自动气象站降水观测资料,检验评估了ECMWF模式对昆仑山北坡不同区域夏季降水日变化特征的预报性能。结果表明:(1) 模式20:00起报的24 h累计降水预报性能优于08:00,模式对昆仑山北坡海拔大于2000 m区域的降水预报能力优于海拔小于2000 m的区域,模式对西昆仑山北坡降水的捕捉能力优于中昆仑山北坡。(2) 模式降水量与观测降水量的日变化特征差异在17:00至次日02:00最大,模式降水频次明显多于观测值,降水强度明显小于观测值,在观测降水较少(多)时段,模式降水易高(低)估;西(中)昆仑山北坡海拔>2000 m(≤2000 m)区域的模式降水量日变化特征与观测降水量的差异较大。(3) 模式降水在西昆仑山北坡以对流性降水预报为主,在中昆仑山北坡以大尺度降水预报为主;模式降水与观测降水日变化特征的误差主要来自对流性降水预报。研究成果可为提高昆仑山北坡夏季降水预报准确率和ECMWF模式降水预报产品订正提供参考。
杨柳 , 杨霞 , 刁鹏 , 胡德喜 , 王媛媛 . ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析[J]. 干旱区研究, 2025 , 42(1) : 27 -39 . DOI: 10.13866/j.azr.2025.01.03
The northern slope of the Kunlun Mountains has a complex terrain and unique diurnal variation of precipitation, which lead to low accuracy in refined precipitation forecasting. The ECMWF model has world-leading forecast performance, but its ability to predict the diurnal variation in precipitation in complex terrain is still unclear. This study used precipitation data from automatic meteorological stations during the summer of the 2020-2023 season to verify and evaluate the ECMWF model’s forecast performance for the diurnal variation of summer precipitation at various regions on the northern slope of the Kunlun Mountains. The results show the following. (1) The 24 h cumulative precipitation forecast performance of the ECMWF model initialized at 20:00 was better than that which initialized at 08:00; the model’s precipitation forecast capability for areas above 2000 m in altitude on the northern slope of the Kunlun Mountains was better than that for areas below 2000 m in altitude; the ECMWF model’s ability to capture precipitation in the Western Kunlun Mountains was superior to that in the Central Kunlun Mountains. (2) The ECMWF model’s forecasts of daily precipitation variations exhibited the greatest discrepancies from observed precipitation between 17:00 and 02:00 the following day. The model’s predicted frequency of precipitation events was much higher than the observed frequencies, but the predicted intensity of precipitation was markedly lower the observed. During periods of low observed precipitation, the model was prone to overestimating precipitation. In regions of the western (central) Kunlun Mountains, on the north-facing slopes with elevations above 2000 m (and up to 2000 m), the model’s daily variation in precipitation significantly diverged from that of the observed precipitation. (3) The ECMWF model’s precipitation forecasts were dominated by convective precipitation (CP) in the Western Kunlun Mountains and by large-scale precipitation (LSP) in the Central Kunlun Mountains. Within the ECMWF model, LSP had a better capturing ability for observed precipitation than CP, and the discrepancies between model precipitation forecasts and observed precipitation were more likely to come from CP. These findings provide a reference for improving the accuracy of summer precipitation forecasts on the northern slope of the Kunlun Mountains and for the correction of the ECMWF model’s precipitation forecasts.
[1] | 杨霞, 周鸿奎, 许婷婷, 等. 南疆夏季不同类型暴雨精细化特征对比分析[J]. 干旱区研究, 2021, 38(3): 747-756. |
[Yang Xia, Zhou Hongkui, Xu Tingting, et al. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer[J]. Arid Zone Research, 2021, 38(3): 747-756. ] | |
[2] | 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346. |
[Yao Junqiang, Li Moyan, Dilinuer Tuoliewubieke, et al. The assessment on“warming-wetting”trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346. ] | |
[3] | 杨霞, 周鸿奎, 赵克明, 等. 1991—2018年新疆夏季小时极端强降水特征[J]. 高原气象, 2020, 39(4): 762-773. |
[Yang Xia, Zhou Hongkui, Zhao Keming, et al. Variation features of hourly precipitation in Xinjiang Province during 1991-2018[J]. Plateau Meteorology, 2020, 39(4): 762-773. ] | |
[4] | 张俊兰, 杨霞, 肖俊安, 等. 昆仑山北部夏季降水多尺度时空变化特征[J]. 高原山地气象研究, 2023, 43(3): 1-10. |
[Zhang Junlan, Yang Xia, Xiao Jun’an, et al. Multi-scale temporal and spatial variation characteristics of summer precipitation in northern Kunlun Mountains[J]. Plateau and Mountain Meteorology Research, 2023, 43(3): 1-10. ] | |
[5] | 韩兴胜. 中昆仑山北坡降水量变化特征分析[J]. 人民长江, 2017, 48(增刊): 85-88. |
[Han Xingsheng. Analysis of precipitation variation characteristics on the northern slope of the Middle Kunlun Mountains[J]. Yangtze River, 2017, 48(Suppl. ): 85-88. ] | |
[6] | 毛炜峄, 玉素甫·阿布都拉, 程鹏, 等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土, 2007, 29(4): 553-558. |
[Mao Weiyi, Yusup Abudula, Cheng Peng, et al. Extreme flood events in 1999 and their formation conditions in northern slopes of the Middle Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 553-558. ] | |
[7] | 辛辰, 漆梁波. ECMWF模式对南方春雨期降水预报的检验和分析[J]. 暴雨灾害, 2018, 37(4): 383-391. |
[Xin Chen, Qi Liangbo. Verification and analysis on precipitation forecast of ECMWF Model during spring rain period in South China[J]. Torrential Rain and Disasters, 2018, 37(4): 383-391. ] | |
[8] | 苏翔, 刘梅, 康志明, 等. 2020年江苏主汛期短期暴雨预报检验[J]. 气象, 2022, 48(3): 357-371. |
[Su Xiang, Liu Mei, Kang Zhiming, et al. Verification of short-range torrential rain forecast during the 2020 Jiangsu main flood season[J]. Meteorological Monthly, 2022, 48(3): 357-371. ] | |
[9] | 陈晓燕, 孔祥伟, 彭筱, 等. 全球和区域数值模式在甘肃2020年汛期降水预报中的检验评估[J]. 干旱气象, 2022, 40(3): 524-535. |
[Chen Xiaoyan, Kong Xiangwei, Peng Xiao, et al. Verification and assessment of precipitation forecast based on global and regional numerical models in Gansu in flood season of 2020[J]. Journal of Arid Meteorology, 2022, 40(3): 524-535. ] | |
[10] | 李智玉, 杜小玲, 朱育雷, 等. 贵州典型地形下强降水特征及其模式预报订正研究[J]. 暴雨灾害, 2024, 43(6): 648-656. |
[Li Zhiyu, Du Xiaoling, Zhu Yulei, et al. Study on characteristics of heavy precipitation and model prediction correction under typical topography in Guizhou[J]. Torrential Rain and Disasters, 2024, 43(6): 648-656. ] | |
[11] | 宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展[J]. 气象学报, 2014, 72(5): 948-968. |
[Yu Rucong, Li Jian, Chen Haoming, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Acta Meteorologica Sinica, 2014, 72(5): 948-968. ] | |
[12] | 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望[J]. 气象科技进展, 2021, 11(3): 155-164. |
[Chen Haoming, Li Puxi, Zhao Yan. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution[J]. Advances in Meteorological Science and Technology, 2021, 11(3): 155-164. ] | |
[13] | 陈春艳, 王建捷, 唐冶, 等. 新疆夏季降水日变化特征[J]. 应用气象学报, 2017, 28(1): 72-85. |
[Chen Chunyan, Wang Jianjie, Tang Ye, et al. Diurnal variations of summer precipitation in Xinjiang[J]. Journal of Applied Meteorological Science, 2017, 28(1): 72-85. ] | |
[14] | 郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65. |
[Guo Yulin, Zhao Yong, Zhou Yaman, et al. Diurnal variation of summer precipitation and its relationship with altitude in Tianshan Mountains of Xinjiang[J]. Arid Land Geography, 2022, 45(1): 57-65. ] | |
[15] | 智协飞, 霍自强. 中国东南地区复杂地形下降水概率预报的订正研究[J]. 大气科学学报, 2023, 46(2): 230-241. |
[Zhi Xiefei, Huo Ziqiang. Calibration of the probabilistic forecast of precipitation over complex terrain in Southeast China[J]. Transactions of Atmospheric Sciences, 2023, 46(2): 230-241. ] | |
[16] | 吕拉昌. 中国地理[M]. 北京: 科学出版社, 2016. |
[Lyu Lachang. Geography of China[M]. Beijing: Science Press, 2016. ] | |
[17] | 张家宝, 苏起元, 孙沈清, 等. 新疆短期天气预报指导手册[M]. 乌鲁木齐: 新疆人民出版社, 1986. |
[Zhang Jiabao, Su Qiyuan, Sun Shenqing, et al. Guidelines for Short-term Weather Forecast in Xinjiang[M]. Urumqi: Xinjiang People’s Publishing House, 1986. ] | |
[18] | 徐月月, 何清, 毛东雷, 等. 2022-2023年中昆仑山北坡不同海拔气象要素梯度对比分析[J]. 高原气象, 2025, 44(1): 224-239. |
[Xu Yueyue, He Qing, Mao Donglei, et al. Comparative analysis of the gradient of meteorological elements at different elevations of the north slope of the Middle Kunlun Mountains from 2022 to 2023[J]. Plateau Meteorology, 2025, 44(1): 224-239. ] | |
[19] | 龙柯吉, 杨康权, 康岚. 多模式对四川盆地强降水过程的预报性能检验[J]. 干旱气象, 2024, 42(3): 473-483. |
[Long Keji, Yang Kangquan, Kang Lan. Performance verification multi-model heavy rainfall processes prediction in the Sichuan Basin[J]. Journal Arid Meteorology, 2024, 42(3): 473-483. ] | |
[20] | 宫宇, 代刊, 徐珺, 等. GRAPES-GFS模式暴雨预报天气学检验特征[J]. 气象, 2018, 44(9): 1148-1159. |
[Gong Yu, Dai Kan, Xu Jun, et al. Synoptic verification characteristics of operational GRAPES GFS Model heavy rain event forecast[J]. Meteorological Monthly, 2018, 44(9): 1148-1159. ] | |
[21] | Luo Yali, Gong Yu, Zhang Dalin. Initiation and organizational modes of an extreme-rain-producing meso-scale convective system along a Mei-Yu front in East China[J]. Monthly Weather Review, 2014, 142(1): 203-221. |
[22] | 廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3): 309-316. |
[Liao Fei, Hong Yanchao, Zheng Guoguang. Review of orographic influences on surface precipitation[J]. Meteorological Science and Technology, 2007, 35(3): 309-316. ] | |
[23] | 钟水新. 地形对降水的影响机理及预报方法研究进展[J]. 高原气象, 2020, 39(5): 1122-1132. |
[Zhong Shuixin. Advances in the study of the influencing mechanism and forecast methods for orographic precipitation[J]. Plateau Meteorology, 2020, 39(5): 1122-1132. ] |
/
〈 |
|
〉 |