农业生态

WOFOST伴随率定三温模型的玉米农田遥感蒸散发估算方法

  • 冯克鹏 ,
  • 许德浩 ,
  • 庄淏然
展开
  • 1.宁夏大学土木与水利工程学院,宁夏 银川 750021
    2.旱区现代农业水资源高效利用教育部工程研究中心,宁夏 银川 750021
    3.宁夏节水灌溉与水资源调控工程技术研究中心,宁夏 银川 750021
    4.宁夏黄河水联网数字治水重点实验室,宁夏 银川 750021
    5.宁夏大学干旱灌区水文与智慧水利野外科学观测研究站,宁夏 银川 750021
冯克鹏(1979-),男,教授,博士,主要从事水文遥感与农业遥感方法、气候变化与水文响应研究. E-mail: fengkp@nxu.edu.cn

收稿日期: 2023-09-20

  修回日期: 2024-01-03

  网络出版日期: 2025-01-17

基金资助

宁夏自然科学基金重点项目(2021AAC02007);宁夏自然科学基金重点项目(2022AAC02007);国家重点研发计划项目(2021YFD1900600);宁夏高等学校一流学科建设项目(NXYLXK2021A03)

An estimation method of remote sensing evapotranspiration in farmland based on the three-temperature model with adjoint calibrated of WOFOST

  • FENG Kepeng ,
  • XU Dehao ,
  • ZHUANG Haoran
Expand
  • 1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Areas, Ministry of Education, Yinchuan 750021, Ningxia, China
    3. Ningxia Engineering Research Center for Water-saving Irrigation and Water Resources Control, Yinchuan 750021, Ningxia, China
    4. Key Laboratory of the Internet of Water and Digital Water Governance of the Yellow River in Ningxia, Yinchuan 750021, Ningxia, China
    5. Arid Irrigation District Hydrology and Smart Water Conservancy Field Scientific Observation Research Station, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2023-09-20

  Revised date: 2024-01-03

  Online published: 2025-01-17

摘要

通过遥感蒸散发模型估算实际蒸散发量的方法已被广泛使用,但精度提升仍是研究热点。作物生长模型在模拟作物蒸腾方面具有良好的机理性和精度。本文结合WOFOST作物生长模型和三温遥感蒸散发模型,提出了一种新的玉米农田遥感蒸散发估算方法。核心思路是本地化WOFOST模型,在验证其模拟精度后,利用其模拟的作物蒸腾数据,构造伴随率定函数,率定三温模型的蒸腾组分,然后合并率定后的土壤蒸发组分,得到玉米农田实际蒸散发估算值。以涡度相关系统观测的实际蒸散发量为参照,评估了该方法的估算精度和适用性。 结果表明,未经率定的三温模型蒸散发、作物蒸腾和土壤蒸发的相关系数分别为0.61、0.71、0.12,均方根误差为1.76 mm·d-1、1.91 mm·d-1、3.02 mm·d-1,纳什效率系数均为负。仅率定土壤蒸发后,相关系数提高至0.77,但误差仍然较大(1.91 mm·d-1),纳什效率系数为-0.74。利用WOFOST模拟的作物蒸腾率定三温模型后,估算值与实际观测的相关系数显著提高至0.89,均方根误差降至0.65 mm·d-1,纳什效率系数达到0.79,表明该方法有效提高了三温遥感蒸散发模型的估算精度,并对其他遥感蒸散发模型的精度提升具有参考意义。

本文引用格式

冯克鹏 , 许德浩 , 庄淏然 . WOFOST伴随率定三温模型的玉米农田遥感蒸散发估算方法[J]. 干旱区研究, 2025 , 42(1) : 166 -178 . DOI: 10.13866/j.azr.2025.01.15

Abstract

The method for estimating evapotranspiration using remote sensing evapotranspiration models has been widely applied, but there is need for research into improving its accuracy. Crop growth models exhibit strong mechanistic foundations and accuracy in simulating crop transpiration. This study integrated the WOFOST crop growth model with the three-temperature remote sensing evapotranspiration model to design a novel method for estimating remote sensing-based evapotranspiration in maize fields. The core approach involved localizing the WOFOST model, validating its simulation accuracy, and using its simulated crop transpiration data to construct an auxiliary calibration function. This function calibrated the transpiration component of the three-temperature model and combined it with the calibrated soil evaporation component to derive the evapotranspiration for the maize fields. Using actual evapotranspiration observed by an eddy covariance system as a reference, the estimation accuracy and applicability of the novel method were evaluated. The results showed that the correlation coefficients of evapotranspiration, crop transpiration, and soil evaporation in the uncalibrated three-temperature model were 0.61, 0.71, and 0.12, respectively, with root mean square errors (RMSE) of 1.76 mm·d-1, 1.91 mm·d-1, and 3.02 mm·d-1, respectively, and negative Nash-Sutcliffe efficiency coefficients. After calibrating only the soil evaporation component, the correlation coefficients improved to 0.77, but the error remained large (1.91 mm·d-1) with a Nash-Sutcliffe efficiency coefficient of -0.74. However, when the three-temperature model was calibrated using the WOFOST-simulated crop transpiration data, the correlation coefficient between the estimated and observed values significantly increased to 0.89, the RMSE decreased to 0.65 mm·d-1, and the Nash-Sutcliffe efficiency coefficient reached 0.79. These results indicate that the proposed method effectively improves the estimation accuracy of the three-temperature remote sensing evapotranspiration model and offers insights for enhancing the accuracy of other remote sensing evapotranspiration models.

参考文献

[1] Zhang K, Kimball J S, Running S W. A review of remote sensing based actual evapotranspiration estimation[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 834-853.
[2] Yang X, Zhou Q, Melville M. Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept[J]. International Journal of Remote Sensing, 1997, 18(2): 453-459.
[3] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL)[J]. Journal of Hydrology, 1998, 212: 198-212.
[4] Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-100.
[5] Nieto H, Kustas W P, Torres-Rúa A, et al. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery[J]. Irrigation Science, 2019, 37: 389-406.
[6] 乔帅帅, 魏征, 张宝忠, 等. 基于DNDC模型的北京市大兴区冬小麦农业用水效率[J]. 排灌机械工程学报, 2018, 36(11): 1087-1091.
  [Qiao Shuaishuai, Wei Zheng, Zhang Baozhong, et al. Water use efficiency of winter wheat based on DNDC model in Daxing District of Beijing[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2018, 36(11): 1087-1091. ]
[7] Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes[J]. Remote Sensing of Environment, 2007, 108(4): 369-384.
[8] García-Santos V, Sánchez J M, Cuxart J. Evapotranspiration acquired with remote sensing thermal-based algorithms: A state-of-the-art review[J]. Remote Sensing, 2022, 14(14): 3440.
[9] 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999.
  [Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ]
[10] Lu Y, Chibarabada T P, McCabe M F, et al. Global sensitivity analysis of crop yield and transpiration from the FAO-AquaCrop model for dryland environments[J]. Field Crops Research, 2021, 269: 108182.
[11] Ran H, Kang S, Hu X, et al. A framework to quantify uncertainty of crop model parameters and its application in arid Northwest China[J]. Agricultural and Forest Meteorology, 2022, 316: 108844.
[12] Zhou J, Cheng G, Li X, et al. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models[J]. Soil Science Society of America Journal, 2012, 76(2): 648-662.
[13] Dewenam L E F, Er-Raki S, Ezzahar J, et al. Performance evaluation of the WOFOST model for estimating evapotranspiration, soil water content, grain yield and total above-ground biomass of winter wheat in Tensift Al Haouz (Morocco): Application to yield gap estimation[J]. Agronomy, 2021, 11(12): 2480.
[14] De Wit A, Boogaard H, Fumagalli D, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167.
[15] Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56.
[16] DeJonge K C, Ascough II J C, Ahmadi M, et al. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231: 113-125.
[17] De Wit A, Boogaard H L, Supit I, et al. System Description of the WOFOST 7.2, Cropping Systems Model[R]. Wageningen Environmental Research, 2020.
[18] Arthur D, Vassilvitskii S. K-means++: The Advantages of Careful Seeding[R]. Stanford Theory Group, 2006.
[19] 熊博文, 李桐, 黄樱, 等. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393.
  [Xiong Bowen, Li Tong, Huang Ying, et al. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 383-393. ]
[20] Hatfield J L, Reginato R J, Idso S B. Comparison of long-wave radiation calculation methods over the United States[J]. Water Resources Research, 1983, 19(1): 285-288.
[21] Jackson R D, Hatfield J L, Reginato R J, et al. Estimation of daily evapotranspiration from one time-of-day measurements[J]. Agricultural Water Management, 1983, 7(1-3): 351-362.
[22] Meeus J H. Astronomical algorithms[M]. Willmann-Bell, Incorporated, 1991.
[23] Menenti M, Azzali S, Verhoef W, et al. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images[J]. Advances in Space Research, 1993, 13(5): 233-237.
[24] Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
[25] Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS)[J]. Remote Sensing of Environment, 2015, 163: 217-228.
[26] Saltelli A. Global Sensitivity Analysis: The Primer[M]. New York: John Wiley & Sons, 2008.
[27] Zhu X, Xu K, Liu Y, et al. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model[J]. Agricultural Systems, 2021, 189: 103040.
[28] LaVenue A M, Pickens J F. Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model[J]. Water Resources Research, 1992, 28(6): 1543-1569.
[29] K?be C, Maruhn J H, Sachs E W. Adjoint-based Monte Carlo calibration of financial market models[J]. Finance and Stochastics, 2009, 13: 351-379.
[30] Clare M C A, Kramer S C, Cotter C J, et al. Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods[J]. Computers & Geosciences, 2022, 163: 105104.
[31] Keane R, Gao H O. Fast calibration of car-following models to trajectory data using the adjoint method[J]. Transportation Science, 2021, 55(3): 592-615.
[32] Jiang L, Zhang B, Han S, et al. Upscaling evapotranspiration from the instantaneous to the daily time scale: Assessing six methods including an optimized coefficient based on worldwide eddy covariance flux network[J]. Journal of Hydrology, 2021, 596: 126135.
[33] Kumar U, Srivastava A, Kumari N, et al. Evaluation of spatio-temporal evapotranspiration using satellite-based approach and lysimeter in the agriculture dominated catchment[J]. Journal of the Indian Society of Remote Sensing, 2021, 49: 1939-1950.
文章导航

/