新疆额尔齐斯河流域平原区地下水水化学特征及高氟水成因机制
收稿日期: 2024-05-26
修回日期: 2024-08-14
网络出版日期: 2024-12-20
基金资助
自治区人才发展基金“天池英才”引进计划项目资助
Hydrochemical properties and genetic mechanisms of high-fluoride groundwater in the Irtysh River Basin Plain, Xinjiang
Received date: 2024-05-26
Revised date: 2024-08-14
Online published: 2024-12-20
为探明新疆额尔齐斯河流域平原区地下水水化学控制因素及高氟水成因,2018年在该流域采集地下水样70组。分析水化学组分及氟的空间分布特征,解析高氟水的形成机制和富集机制,基于绝对因子分析-多元线性回归模型定量计算不同因素对流域地下水水化学组分的贡献。结果表明:(1) 研究区地下水整体为中性偏弱碱性,额尔齐斯河以北以淡水为主,额尔齐斯河以南以微咸水为主,额尔齐斯河以北与以南地下水F-超标率分别为27.91%和44.44%。额尔齐斯河以北与以南地下水化学类型均以HCO3·SO4-Na·Ca型为主。(2) SOM结果表明,F-可能来源于多种元素混合的含氟矿物;APCS-MLR模型得出,研究区地下水化学组分的形成主要受到溶滤-富集(58.03%)、地下水酸碱度(16.28%)和原生地质环境(10.28%)的影响。(3) 矿物溶解沉淀、蒸发浓缩作用、岩石风化和阳离子交换作用是控制高氟地下水形成的主要因素;地下水环境、气候因素、地形地貌和人类活动是控制高氟地下水富集的主要因素。
关键词: 地下水; 水化学; 氟富集; 额尔齐斯河流域平原区
郑钰 , 孙英 , 周金龙 , 李如跃 . 新疆额尔齐斯河流域平原区地下水水化学特征及高氟水成因机制[J]. 干旱区研究, 2024 , 41(12) : 2056 -2070 . DOI: 10.13866/j.azr.2024.12.08
In this study, we explored the chemical control factors influencing groundwater and the causes of high-fluoride concentrations in the Irtysh River Basin plain, Xinjiang. In 2018, 70 groundwater samples were collected to analyze the spatial distribution characteristics of hydrochemical components and fluoride. The mechanisms behind the formation and enrichment of the high-fluoride water were also examined. Using an absolute factor analysis-multiple linear regression model (APCS-MLR), we quantitatively assessed the contributions of various factors to the hydrochemical components of groundwater in the basin. The results show the following: (1) The groundwater in the study area is generally neutral and slightly alkaline. The north of the Irtysh River is dominated by fresh water, while the south is dominated by brackish water. The rates of fluoride exceedance in the north and south of the Irtysh River are 27.91% and 44.44%, respectively. The primary chemical type of groundwater in both areas is HCO3·SO4-Na·Ca type. (2) The results of the SOM analysis suggest that fluoride may be derived from fluorine-containing minerals mixed with various elements. The APCS-MLR model indicates that the formation of groundwater chemical components in the study area is mainly affected by leaching enrichment (58.03%), groundwater pH (16.28%), and the primary geological environment (10.28%). (3) The primary factors influencing the formation of high-fluoride groundwater include mineral dissolution and precipitation, evaporation and concentration, rock weathering, and cation exchange. Additionally, the groundwater environment, climatic factors, topography, and human activities significantly contribute to the enrichment of high-fluoride groundwater.
Key words: groundwater; hydrochemistry; fluorine enrichment; Irtysh River Basin Plain
[1] | 白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428. |
[Bai Fan, Zhou Jinlong, Zeng Yanyan. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428. ] | |
[2] | 康文辉, 周殷竹, 孙英, 等. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425-1437. |
[Kang Wenhui, Zhou Yinzhu, Sun Ying, et al. Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang[J]. Arid Zone Research, 2023, 40(9): 1425-1437. ] | |
[3] | Adeyeye O A, Xiao C L, Zhang Z H, et al. Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, Northeastern China[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111926. |
[4] | Ali S, Thakur S K, Sarkar A, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14(3): 291-315. |
[5] | 李巧. 准噶尔盆地平原区地下水水质时空演化研究[D]. 乌鲁木齐: 新疆农业大学, 2014. |
[Li Qiao. Spatial and Temporal Evolution of Groundwater Quality in the Plain Area of Jungar Basin[D]. Urumqi: Xinjiang Agricultural University, 2023. ] | |
[6] | Huang L W, Sun Z Y, Zhou A G, et al. Source and enrichment mechanism of fluoride in groundwater of the Hotan oasis within the Tarim Basin, Northwestern China[J]. Environmental Pollution, 2022, 300: 118962. |
[7] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268. |
[Mao Ruoyu, Guo Huaming, Jia Yongfeng, et al. Distribution characteristics and genesis of fluoride groundwater in the Hetao Basin, Inner Mongolia[J]. Earth Science Frontiers, 2016, 23(2): 260-268. ] | |
[8] | Lahermo P, Sandstrom H, Malisa E. The occurrence and geochemistry of fluorides in natural waters in finland and East Africa with reference to their geomedical implications[J]. Journal of Geochemical Exploration, 1991, 41(1-2): 65-79. |
[9] | Xiao Y, Liu K, Hao Q C, et al. Occurrence, controlling factors and health hazards of fluoride-enriched groundwater in the lower flood plain of Yellow River, Northern China[J]. Exposure and Health, 2022, 14: 345-358. |
[10] | Su C L, Wang M Z, Xie X J, et al. Natural and anthropogenic factors regulating fluoride enrichment in groundwater of the Nansi Lake Basin, Northern China[J]. Science of the Total Environment, 2023, 904: 166699. |
[11] | 时雯雯, 周金龙, 曾妍妍, 等. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164. |
[Shi Wenwen, Zhou Jinlong, Zeng Yanyan, et al. Distribution characteristics and formation of fluorinein groundwater in Hotan Prefecture[J]. Arid Zone Research, 2022, 39(1): 155-164. ] | |
[12] | Wang Y X, Li J X, Ma T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933. |
[13] | 晏婴. 北京东南部地区第四系地下水氟离子富集研究[D]. 长春: 吉林大学, 2016. |
[Yan Ying. Research on the Enrichment Rule of Fluorine Ion Concentration in Quaternary Groundwater of Beijing South East Area[D]. Changchun: Jilin University, 2016. ] | |
[14] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. |
[Lv Xiaoli, Liu Jingtao, Zhou Bing, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436. ] | |
[15] | Li Y, Zhang M H, Mi W J, et al. Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions[J]. Science of the Total Environment, 2023, 906: 167716. |
[16] | 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第七版. 北京: 地质出版社, 2018. |
[Zhang Renquan, Liang Xing, Jin Menggui, et al. Hydrogeology Foundation[M]. 7th ed. Beijing: Geological Publishing House, 2018. ] | |
[17] | 韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征[J]. 环境科学, 2016, 37(4): 1345-1352. |
[Wei Hong, Wu Jinkui, Shen Yongping, et al. Hydrochemical characteristics of snow meltwater and river water during snow-melting period in the headwaters of the Ertis River Xinjiang[J]. Environmental Science, 2016, 37(4): 1345-1352. ] | |
[18] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[Zhang Xiaomin, Zhang Dongmei, Zhang Wei. Effects of human activities on carbon storage in the Irtysh River Basin[J]. Arid Zone Research, 2023, 40(8): 1333-1345. ] | |
[19] | 夏自强, 黄峰, 郭利丹. 额尔齐斯河流域水文地理特征分析及人类活动影响研究[M]. 北京: 中国水利水电出版社, 2015. |
[Xia Ziqiang, Huang Feng, Guo Lidan. Study on the Analysis of Hydrological and Geographical Characteristics and the Influence of Human Activities in Irtysh River Basin[M]. Beijing: China Water Resources and Hydropower Publishing House, 2015. ] | |
[20] | 新疆维吾尔自治区国土资源厅. 新疆维吾尔自治区环境地质图集[R]. 乌鲁木齐: 新疆维吾尔自治区国土资源厅, 2005. |
[Department of Land and Resources of Xinjiang Uygur Autonomous Region. Environmental Geological Atlas of Xinjiang Uygur Autonomous Region[R]. Urumqi: Department of Land and Resources of Xinjiang Uygur Autonomous Region, 2005. ] | |
[21] | 涂治. 准噶尔盆地绿洲带地下水优先控制污染物的识别与影响因素研究[D]. 乌鲁木齐: 新疆农业大学, 2023. |
[Tu Zhi. Identification and Influencing Factors of Groundwater Priority Control Pollutants in the Oasis Belt of the Junggar Basin[D]. Urumqi: Xinjiang Agricultural University, 2023. ] | |
[22] | 梁潇丹. 新疆阿勒泰铜金多金属资源基地矿山地质环境综合评价与治理恢复研究[D]. 西安: 长安大学, 2020. |
[Liang Xiaodan. Comprehensive Evaluation and Restoration of Mine Geological Environment in Altay Copper-Gold Polymetallic Resource Base, Xinjiang[D]. Xi’an: Chang’an University, 2020. ] | |
[23] | Li T, Sun G H, Yang C P, et al. Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes[J]. Science of the Total Environment, 2018, 628-629: 1446-1459. |
[24] | Melo D S, Gontijo E S J, Frascareli D, et al. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs[J]. Water Resources Research, 2019, 55(12): 10268-10281. |
[25] | Liu Z P, Feng S Y, A Z S, et al. Long-term evolution of groundwater hydrochemistry and its influencing factors based on self-organizing map (SOM)[J]. Ecological Indicators, 2023, 154: 110697. |
[26] | 丁启振, 周殷竹, 周金龙, 等. 新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价[J/OL]. 地球科学, 2023, 1-16. doi: 42.1874.P.20230801.1722.004.html. |
[Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, et al. Spatial distribution, source apportionment and health risk assessment of inorganic pollutant in groundwater in the eastern plain of Xinjiang[J/OL]. Earth Science, 2023, 1-16. doi: 42.1874.P.20230801.1722.004.html. ] | |
[27] | Nguyen T T, Kawamura A, Tong T N, et al. Clustering spatio-seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam[J]. Journal of Hydrology, 2015, 522: 661-673. |
[28] | 刘金宇, 舒启海, 张为, 等. 岩浆热液系统氟的富集与成矿[J]. 岩石学报, 2024, 40(6): 1943-1958. |
[Liu Jinyu, Shu Qihai, Zhang Wei, et al. Fluorine enrichment and mineralization in magmatic-hydrothermal systems[J]. Acta Petrologica Sinica, 2024, 40(6): 1943-1958. ] | |
[29] | 康文辉, 周殷竹, 雷米, 等. 新疆玛纳斯河流域地下水砷氟碘分布及共富集成因[J]. 中国环境科学, 2024, 44(7): 3832-3842. |
[Kang Wenhui, Zhou Yinzhu, Lei Mi, et al. Distribution and co-enrichment of arsenic, fluorine, and iodine in groundwater of the Manas River Basin in Xinjiang[J]. China Environmental Science, 2024, 44(7): 3832-3842. ] | |
[30] | 张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106. |
[Zhang Jie, Zhou Jinlong, Nai Weihua, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106. ] | |
[31] | 林重阳. 漳卫河流域地下水的水化学特征和高氟地下水的形成[D]. 北京: 中国地质大学, 2020. |
[Lin Chongyang. Hydrochemical Characteristics of Groundwater and Their Relation to High Fluoride Concentration in Zhangwei River Basin[D]. Beijing: China University of Geosciences, 2020. ] | |
[32] | Qiu H L, Gui H R, Xu H F, et al. Occurrence, controlling factors and noncarcinogenic risk assessment based on Monte Carlo simulation of fluoride in mid-layer groundwater of Huaibei mining area, North China[J]. Science of the Total Environment, 2023, 856: 159112. |
[33] | 王鸿. 北屯市土地利用与景观生态格局分析[D]. 西安: 西北大学, 2014. |
[Wang Hong. Analysis of Land Use and Landscape Ecological Pattern in Beitun City[D]. Xi’an: Northwest University, 2014. ] | |
[34] | 姜凤, 周金龙, 周殷竹, 等. 巴伊盆地平原区地下水水化学特征及污染源识别[J]. 环境科学, 2023, 44(11): 6050-6061. |
[Jiang Feng, Zhou Jinlong, Zhou Yinzhu, et al. Hydrochemical characteristics and pollution sources identification of groundwater in plain area of Barkol-Yiwu Basin[J]. Environmental Science, 2023, 44(11): 6050-6061. ] | |
[35] | Zeng Y Y, Lu H, Zhong J L, et al. Enrichment mechanism and health risk assessment of fluoride in groundwater in the oasis zone of the Tarim Basin in Xinjiang, China[J]. Exposure and Health, 2023, 16: 263-278. |
[36] | 孙英. 塔里木盆地绿洲带地下水碘的来源与富集机理研究[D]. 乌鲁木齐: 新疆农业大学, 2022. |
[Sun Ying. Study on the Source and Enrichment Mechanism of Iodine in Groundwater of Tarim Basin Oasis Zone[D]. Urumqi: Xinjiang Agricultural University, 2022. ] | |
[37] | 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114. |
[Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114. ] | |
[38] | 邓远东, 冶雪艳, 吴亚敏, 等. 松嫩平原西部地下水氟和砷的富集机理与动态变化特征[J]. 中国环境科学, 2023, 43(10): 5277-5290. |
[Deng Yuandong, Ye Xueyan, Wu Yamin, et al. Enrichment mechanism and dynamic variation characteristics of fluorine and arsenic in groundwater of western Songnen Plain[J]. China Environmental Science, 2023, 43(10): 5277-5290. ] | |
[39] | 邹嘉文, 刘飞, 张靖坤. 南水北调典型受水区浅层地下水水化学特征及成因[J]. 中国环境科学, 2022, 42(5): 2260-2268. |
[Zou Jiawen, Liu Fei, Zhang Jingkun. Hydrochemical characteristics and formation mechanism of shallow groundwater in typical water-receiving areas of the South-to-North Water Diversion Project[J]. China Environmental Science, 2022, 42(5): 2260-2268. ] | |
[40] | 王平顺, 苗新岳, 燕亚平, 等. 内蒙古伊敏盆地地下水水化学特征及其成因[J]. 干旱区研究, 2024, 41(3): 411-420. |
[Wang Pingshun, Miao Xinyue, Yan Yaping, et al. Hydrochemical characteristics and genesis of groundwater in the Yimin Basin, Inner Mongolia[J]. Arid Zone Research, 2024, 41(3): 411-420. ] | |
[41] | Zhang J, Zhou J L, Chen Y F, et al. Identifying the factors controlling surface water and groundwater chemical characteristics and irrigation suitability in the Yarkant River Basin, Northwest China[J]. Environmental Research, 2023, 223: 115452. |
[42] | 张文琦, 董少刚, 马铭言, 等. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555. |
[Zhang Wenqi, Dong Shaogang, Ma Mingyan, et al. Chemical characteristics and origin of groundwater in the Daihai Basin[J]. Arid Zone Research, 2021, 38(6): 1546-1555. ] | |
[43] | Wang Z, Guo H M, Xing S P, et al. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater[J]. Journal of Hydrology, 2021, 598: 126372. |
[44] | Wang W Z, Zhou L, He S, et al. Spatial and seasonal variability, control factors and health risk of fluoride in natural water in the Loess Plateau of China[J]. Journal of Hazardous Materials, 2022, 434: 128897. |
[45] | Awaleh M O, Boschetti T, Ahmed M M, et al. Spatial distribution, geochemical processes of high-content fluoride and nitrate groundwater, and an associated probabilistic human health risk appraisal in the Republic of Djibouti[J]. Science of the Total Environment, 2024, 927: 171968. |
[46] | Zhi C S, Hu B X, Chang W B, et al. Enrichment mechanism of fluoride and iodine in saline groundwater in the lower flood plain of the Yellow River, Northern China[J]. Journal of Hydrology, 2023, 621: 129529. |
[47] | 赵增锋, 王楚尤, 邱小琮, 等. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J/OL]. 地学前缘, 1-14. doi: 10.13745/j.esf.sf.2023.12.36. |
[Zhao Zengfeng, Wang Chuyou, Qiu Xiaocong, et al. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia[J]. Earth Science Frontiers, 1-14. doi: 10.13745/j.esf.sf.2023.12.36. ] | |
[48] | 刘峰, 李忠勤, 郝嘉楠, 等. 额尔齐斯河源春季水化学及稳定同位素特征研究[J]. 冰川冻土, 2020, 42(1): 234-242. |
[Liu Feng, Li Zhongqin, Hao Jianan, et al. Study on the hydrochemical and stable isotope characteristics at the headwaters of the Irtysh River in spring[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 234-242. ] | |
[49] | 刘海, 康博, 管政亭, 等. 淮南煤矿区地表水和地下水水化学特征及控制因素[J]. 环境科学, 2023, 44(11): 6038-6049. |
[Liu Hai, Kang Bo, Guan Zhengting, et al. Hydrochemical characteristics and control factors of surface water and groundwater in Huainan coal mining area[J]. Environmental Science, 2023, 44(11): 6038-6049. ] | |
[50] | 新疆维吾尔自治区国土资源厅. 新疆维吾尔自治区矿产开发简明图集[R]. 乌鲁木齐: 新疆维吾尔自治区国土资源厅, 2004. |
[Department of Land and Resources of Xinjiang Uygur Autonomous Region. Concise Atlas of Mineral Development in Xinjiang Uygur Autonomous Region[R]. Urumqi: Department of Land and Resources of Xinjiang Uygur Autonomous Region, 2004. ] |
/
〈 |
|
〉 |