农业生态

河套灌区农田地下水化学特征与不同地类水盐迁移

  • 侯聪 ,
  • 史海滨 ,
  • 苗庆丰 ,
  • 胡智远 ,
  • 赵毅 ,
  • 于翠翠 ,
  • 闫妍 ,
  • 范理权 ,
  • 张涛
展开
  • 1.内蒙古农业大学水利与土木建筑工程学院,内蒙古 呼和浩特 010018
    2.高效节水技术装备与水土环境效应内蒙古工程研究中心,内蒙古 呼和浩特 0100181
    3.呼和浩特水文水资源分中心,内蒙古 呼和浩特 010020
侯聪(2000-),男,硕士研究生,主要从事干旱区农业水文过程研究. E-mail: 2531741700@qq.com
史海滨. E-mail: shi_haibin@sohu.com

收稿日期: 2024-06-07

  修回日期: 2024-08-04

  网络出版日期: 2024-11-29

基金资助

内蒙古自治区“揭榜挂帅”项目(2023JBGS0003);国家重点研发计划(2021YFC3201202-05);国家自然科学基金项目(52269014)

Chemical characteristics of groundwater and water-salt transport in different land classes in the Hetao Irrigation District

  • HOU Cong ,
  • SHI Haibin ,
  • MIAO Qingfeng ,
  • HU Zhiyuan ,
  • ZHAO Yi ,
  • YU Cuicui ,
  • YAN Yan ,
  • FAN Liquan ,
  • ZHANG Tao
Expand
  • 1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018,Inner Mongolia, China
    2. High Efficiency Water-saving Technology and Equipment and Soil Water Environment Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot 010018, Inner Mongolia, China
    3. Hohhot Hydrology and Water Resources Sub-Center, Hohhot 010020, Inner Mongolia, China

Received date: 2024-06-07

  Revised date: 2024-08-04

  Online published: 2024-11-29

摘要

为确定深度节水背景下河套灌区农田地下水的化学特征与不同类型农田间的水盐迁移转化关系,选取河套灌区典型灌溉农田作为试验区,利用经典统计学、主成分分析与溶质动力学原理,分析典型灌溉农田浅层地下水离子与浅层地下水埋深变化特征,确定影响地下水水质的主要地下水特征因子;讨论作物种植前后土壤离子变化情况;运用定位通量法确定了地下水对不同类型农田间盐分的贡献,并建立水盐均衡模型。结果表明:(1) 浅层地下水阳离子以Na++K+为主,占阳离子总量的53.22%,阴离子以SO42-为主,占阴离子总量的41.04%,地下水主要化学类型为HCO3·SO4-Na型,通过主成分分析得出影响地下水水质的主要特征因子为TDS、Na++K+、HCO3-、SO42-。(2) 作物种植前后盐分积聚以NaCl和Na2SO4为主。(3) 不同类型田块的蒸散量不同,荒地、葵花地、玉米地的ET分别为422.6 mm、475.6 mm、625.8 mm。(4) 玉米、葵花、荒地土壤均处于积盐状态,通过水平渗透进入荒地的盐分为1924 kg·hm-2,占荒地积盐量的22.00%。(5) 荒地与耕地存在盐分过渡带,荒地附近推荐种植葵花等耐盐性较好经济作物。研究可以为当地水资源高效利用、土壤盐渍化调控和农业可持续发展提供指导意义。

本文引用格式

侯聪 , 史海滨 , 苗庆丰 , 胡智远 , 赵毅 , 于翠翠 , 闫妍 , 范理权 , 张涛 . 河套灌区农田地下水化学特征与不同地类水盐迁移[J]. 干旱区研究, 2024 , 41(11) : 1956 -1968 . DOI: 10.13866/j.azr.2024.11.15

Abstract

In this study, we aimed to investigate the chemical characteristics of groundwater in farmland within Hetao Irrigation District, focusing on deep water conservation and the relationship between water and salt migration among various types of farmland. Typical irrigated farmland in Hetao Irrigation District was selected as the study area, and an analysis was conducted on shallow groundwater ions and changes in groundwater levels using classical statistics, principal component analysis, and the principle of solute dynamics. The main factors affecting groundwater quality were identified, and the changes in soil ions before and after crop cultivation were examined. Furthermore, the contribution of groundwater to salt accumulation across different types of farmland was quantified, and a water-salt equilibrium model was developed using the locational flux method. The results revealed the following: (1) Shallow groundwater cations were dominated by Na++K+, constituting 53.22% of total cations, while anions were dominated by SO42-, making up 41.04% of total anions; thus, the principal chemical type of groundwater was classified as HCO3·SO4-Na, with key factors affecting groundwater quality identified as Total Dissolved Solids (TDS), Na++K+, HCO3-, and SO42- through principal component analysis. (2) Salt accumulation before and after crop cultivation was mainly comprised of NaCl and Na2SO4. (3) Evapotranspiration (ET) varied across different types of fields, with measurements of 422.6 mm for wasteland, 475.6 mm for sunflower fields, and 625.8 mm for maize fields. (4) Maize, sunflower, and wasteland soils exhibited salt accumulation, with horizontal infiltration contributing 1924 kg·hm-2 of salt to wasteland, accounting for 22.00% of total salt accumulation. (5) There is a salt transition zone between wasteland and arable land, indicating the planting of salt-tolerant cash crops, such as sunflower, near wasteland to mitigate crop yield reductions due to high salinity levels. This study offers valuable insights into the efficient use of local water resources, soil salinity management, and sustainable agricultural development.

参考文献

[1] Zhang H, Xiong Y, Huang G, et al. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District[J]. Agricultural Water Management, 2017, 179: 205-214.
[2] 孙贯芳, 高照良, 朱焱, 等. 时空克里金评估河套灌区土壤盐分时空格局[J]. 干旱区研究, 2023, 40(2): 182-193.
  [Sun Guanfang, Gao Zhaoliang, Zhu Yan, et al. Spatio-temporal patterns of soil salinity in Hetao Irrigation District based on spatio-temporal Kriging[J]. Arid Zone Research, 2023, 40(2): 182-193. ]
[3] 苏春利, 纪倩楠, 陶彦臻, 等. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923.
  [Su Chunli, Ji Qiannan, Tao Yanzhen, et al. Differentiation characteristics and main influencing factors of soil salinization in the West of Hetao Irrigation Area[J]. Arid Zone Research, 2022, 39(3): 916-923. ]
[4] 马小茗, 李瑞平, 李鑫磊, 等. 河套灌区地下水埋深与土壤盐分对增强型植被指数的联合影响[J]. 干旱地区农业研究, 2023, 41(3): 134-141, 165.
  [Ma Xiaoming, Li Ruiping, Li Xinlei, et al. Combined effects of groundwater depth and soil salinization on enhanced vegetation index in Hetao Irrigation Area[J]. Arid Zone Agricultural Research, 2023, 41(3): 134-141, 165. ]
[5] 牛乾坤, 刘浏, 黄冠华, 等. 基于GEE和机器学习的河套灌区复杂种植结构识别[J]. 农业工程学报, 2022, 38(6): 165-174.
  [Niu Qiankun, Liu Liu, Huang Guanhua, et al. Extraction of complex crop structure in the Hetao Irrigation District of Inner Mongolia using GEE and machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 165-174. ]
[6] 徐英, 葛洲, 王娟, 等. 基于指示Kriging法的土壤盐渍化与地下水埋深关系研究[J]. 农业工程学报, 2019, 35(1): 123-130.
  [Xu Ying, Ge Zhou, Wang Juan, et al. Study on relationship between soil salinization and groundwater table depth based on indicator Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 123-130. ]
[7] Fan X, Pedroli B, Liu G, et al. Soil salinity development in the yellow river delta in relation to groundwater dynamics[J]. Land Degradation & Development, 2012, 23(2): 175-189.
[8] 张文聪, 史海滨, 李仙岳, 等. 河套灌区典型区土壤水-地下水动态与转化关系研究[J]. 农业机械学报, 2022, 53(10): 352-362.
  [Zhang Wencong, Shi Haibin, Li Xianyue, et al. Dynamic and transformation relationship between soil water and groundwater in typical areas of Hetao Irrigation District[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 352-362. ]
[9] 孔繁瑞, 屈忠义, 刘雅君, 等. 不同地下水埋深对土壤水、盐及作物生长影响的试验研究[J]. 中国农村水利水电, 2009(5): 44-48.
  [Kong Fanrui, Qu Zhongyi, Liu Yajun, et al. Experimental research on the effect of different kinds of groundwater buried depth on soil water salinity and crop growth[J]. China Rural Water and Hydropower, 2009(5): 44-48. ]
[10] 王国帅, 史海滨, 李仙岳, 等. 河套灌区耕地-荒地-海子系统间不同类型水分运移转化[J]. 水科学进展, 2020, 31(6): 832-842.
  [Wang Guoshuai, Shi Haibin, Li Xianyue, et al. Study on migration of different types water during farmland-wasteland-lake system in Hetao Irrigation District[J]. Advances in Water Science, 2020, 31(6): 832-842. ]
[11] 袁成福. 西北旱区灌溉条件下土壤水盐动态监测分析与数值模拟[D]. 扬州: 扬州大学, 2022.
  [Yuan Chengfu. Monitoring Analysis and Numerical Simulation of SoilWater-Salt dynamics under Irrigation Conditions in AridArea of Northwest China[D]. Yangzhou: Yangzhou University, 2022. ]
[12] 任东阳, 徐旭, 黄冠华. 河套灌区典型灌排单元农田耗水机制研究[J]. 农业工程学报, 2019, 35(1): 98-105.
  [Ren Dongyang, Xu Xu, Huang Guanhua. Irrigation water use in typical irrigation and drainage system of Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 98-105. ]
[13] 张倩, 全强, 李健, 等. 河套灌区节水条件下地下水动态变化分析[J]. 灌溉排水学报, 2018, 37(增刊): 97-101.
  [Zhang Qian, Quan Qiang, Li Jian, et al. Groundwater dynamic changing under water-saving irrigation conditions of Hetao Irrigation District[J]. Journal of Irrigation and Drainage, 2018, 37(Suppl. ): 97-101. ]
[14] 童文杰. 河套灌区作物耐盐性评价及种植制度优化研究[D]. 北京: 中国农业大学, 2014.
  [Tong Wenjie. Study on Salt Tolerance of Crops and Cropping System Optimization in Hetao Irrigation District[D]. Beijing: China Agricultural University, 2014. ]
[15] 雷志栋. 土壤水动力学[M]. 北京: 清华大学出版社, 1998.
  [Lei Zhidong. Soil Hydrodynamics[M]. Beijing: Tsinghua University Press, 1998. ]
[16] 王国帅, 史海滨, 李仙岳, 等. 河套灌区不同地类盐分迁移估算及与地下水埋深的关系[J]. 农业机械学报, 2020, 51(8): 255-269.
  [Wang Guoshuai, Shi Haibin, Li Xianyue, et al. Estimation of salt transport and relationship with groundwater depth in different land types in Hetao Irrigation Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 255-269. ]
[17] 李彬, 史海滨, 张建国, 等. 节水改造前后内蒙古河套灌区地下水水化学特征[J]. 农业工程学报, 2014, 30(21): 99-110.
  [Li Bin, Shi Haibin, Zhang Jianguo, et al. Hydrochemical characteristics of groundwater before and after water-saving reform in Hetao Irrigation District, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 99-110. ]
[18] 杜丹丹, 白燕英, 袁德亮. 河套灌区地下水化学时空特征及环境驱动因素[J]. 环境科学, 2024, 45(10): 5777-5789.
  [Du Dandan, Bai Yanying, Yuan Deliang. Chemical spatiotemporal characteristics and environmental driving factors of groundwater in Hetao Irrigation Area[J]. Environmental Science, 2024, 45(10): 5777-5789. ]
[19] 房丽晶, 高瑞忠, 贾德彬, 等. 草原流域地下水化学时空特征及环境驱动因素——以内蒙古巴拉格尔河流域为例[J]. 中国环境科学, 2021, 41(5): 2161-2169.
  [Fang Lijing, Gao Ruizhong, Jia Debin, et al. Spatial-temporal characteristics of groundwater quality and its environmental driving factors of Steppe Basin—Taken Balaguer river basin of Inner Mongolia for instance[J]. China Environmental Science, 2021, 41(5): 2161-2169. ]
[20] 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学, 2020, 41(9): 4011-4020.
  [Cui Jiaqi, Li Xianyue, Shi Haibin, et al. Temporal and spatial variation change of groundwater environment in the salinized irrigation districts under the background of water-saving reconstruction[J]. Environmental Science, 2020, 41(9): 4011-4020. ]
[21] 袁宏颖, 杨树青, 张万锋, 等. 渠道衬砌前后输水对地下水化学特征及土壤盐分含量的影响[J]. 中国土壤与肥料, 2022(10): 41-49.
  [Yuan Hongying, Yang Shuqing, Zhang Wanfeng, et al. Influence of channel conveyance before and after lining on groundwater chemical characteristics and soil salt contents[J]. Soil and Fertilizer Sciences in China, 2022(10): 41-49. ]
[22] 窦旭, 史海滨, 李瑞平, 等. 盐渍化土壤剖面盐分与养分分布特征及盐分迁移估算[J]. 农业机械学报, 2022, 53(1): 279-290, 330.
  [Dou Xu, Shi Haibin, Li Ruiping, et al. Distribution characteristics of salinity and nutrients in salinized soil profile and estimation of salt migration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 279-290, 330. ]
[23] 李亮, 史海滨, 贾锦凤, 等. 内蒙古河套灌区荒地水盐运移规律模拟[J]. 农业工程学报, 2010, 26(1): 31-35.
  [Li Liang, Shi Haibin, Jia Jinfeng, et al. Simulation of water and salt transport of uncultivated land in HetaoIrrigation District in InnerMongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 31-35. ]
[24] 曾揭峰, 刘霞, 李就好, 等. 基于SWAP模型的耕地-盐荒地-沙丘-海子水盐动态分析[J]. 农业资源与环境学报, 2018, 35(6): 540-549.
  [Zeng Jiefeng, Liu Xia, Li Jiuhao, et al. Dynamic analysis of water and salt in cultivated land-salt wasteland-dunes-Haizi based on SWAP model[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 540-549. ]
[25] Xiao X, Xu X, Ren D, et al. Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use[J]. Agricultural Water Management, 2021, 249: 106811.
[26] Liu G, Wang C, Wang X, et al. Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments[J]. Agricultural Water Management, 2022, 274: 107968.
文章导航

/