水土资源

那棱格勒河流域氢氧同位素特征及其指示意义

  • 张寿川 ,
  • 赵春涛 ,
  • 安亚涛 ,
  • 刘凯 ,
  • 余冬梅 ,
  • 陈亮 ,
  • 李庆宽 ,
  • 王建萍
展开
  • 1.中国地质科学院,北京 100037
    2.中国科学院青海盐湖研究所,青海省盐湖地质与环境重点实验室,青海 西宁 810008
    3.中国科学院青海盐湖研究所,盐湖资源综合高效利用重点实验室,青海 西宁 810008
    4.河北省煤田地质局第二地质队(河北省干热岩研究中心),河北 邢台 054001
张寿川(1993-),男,博士,助理研究员,主要从事水文地球化学研究. E-mail: zhangsc@cags.ac.cn
赵春涛. E-mail: zhaoctao22@isl.ac.cn

收稿日期: 2024-08-20

  修回日期: 2024-09-14

  网络出版日期: 2024-11-29

基金资助

第二次青藏高原综合科学考察研究项目(2022QZKK0201);青海省盐湖地质与环境重点实验室开放课题项目(2024-KFKT-B10);中国地质科学院基本科研业务费(JKY202406);国家自然科学基金(U20A2088);盐湖资源综合开发与利用项目(2023ZXKYA05100)

Hydrogen and oxygen isotopic characteristics and indicative significance in the Nalenggele River

  • ZHANG Shouchuan ,
  • ZHAO Chuntao ,
  • AN Yatao ,
  • LIU Kai ,
  • YU Dongmei ,
  • CHEN Liang ,
  • LI Qingkuan ,
  • WANG Jianping
Expand
  • 1. Chinese Academy of Geological Science, Beijing 100037, China
    2. Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    3. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    4. The Second Geological Team of Hebei Coal Field Geology Bureau (Hebei Province Dry Hot Rock Research Center), Xingtai 054001, Hebei, China

Received date: 2024-08-20

  Revised date: 2024-09-14

  Online published: 2024-11-29

摘要

本文基于那棱格勒河流域63组样品测试结果,分析流域内大气降水、河水、地下水、湖表卤水和晶间卤水的氢氧同位素和氘盈余参数分布特征及主控因素,结果表明:(1) 受到蒸发和水汽再循环的双重影响,研究区大气降水δD、δ18O均大于我国平均值,且研究区大气降水线斜率小于全球大气降水线但大于西北干旱区其他流域大气降水线,东亚季风远距离输送是导致研究区8月大气降水氘盈余偏低的主要因素。(2) 研究区河水线斜率小于全球大气降水线,河水氘盈余与δ18O、TDS呈负相关关系,均为河水经历强蒸发作用导致同位素分馏所致,研究区南部山区降雨是河水主要补给来源,高程效应导致不同区段河水δD、δ18O产生差异。(3) 不同区段地下水与地表水补给、排泄关系存在差异,加之地下水主要接受山区多源补给,导致地下水线斜率、截距均大于全球大气降水线和当地大气降水线。(4) 湖表卤水和晶间卤水均出现“氧漂移”现象,且二者氘盈余参数均小于0,这与蒸发导致氢氧同位素过度分馏密切相关,盐类矿物溶滤作用是致使晶间卤水氘盈余值小于湖表卤水的主要原因。

本文引用格式

张寿川 , 赵春涛 , 安亚涛 , 刘凯 , 余冬梅 , 陈亮 , 李庆宽 , 王建萍 . 那棱格勒河流域氢氧同位素特征及其指示意义[J]. 干旱区研究, 2024 , 41(11) : 1853 -1863 . DOI: 10.13866/j.azr.2024.11.06

Abstract

In this study, 63 samples comprising atmospheric precipitation, river water, groundwater, lake surface brine, and intercrystaline bittern were collected from the Nalenggele River. These samples were analyzed to assess the distribution characteristics and influencing factors of hydrogen and oxygen isotope, as well as deuterium surplus. The key findings are as follows: (1) The δD and δ18O values of atmospheric precipitation in the study area are higher than the average values across China. Due to the combined effect of evaporation and water vapor recirculation, the slope of the meteoric water line in the study area is lower than the global meteoric water line but higher than that of other drainage basins in the northwest arid zone. The East Asian monsoon, which transports water vapor over long distances, is the primary factor contributing to the low deuterium surplus in the atmospheric precipitation of the study area in August. (2) The river water line slope in the study area is smaller than that of the global meteoric water line. The deuterium surplus in river water is negatively correlated with δ18O and TDS (Total dissolved solids), which is attributed to isotopic fractionation caused by evaporation. The river is primarily recharged by atmospheric precipitation from southern mountainous areas. Variations in isotopic elevation effects result in differences in δD and δ18O values across different sections of the Nalenggele River. (3) Groundwater-surface water interactions, along with the groundwater recharge from multiple sources in the southern mountainous areas, cause the slope and intercept of the groundwater lines to be larger than those of both the global and local meteoric water lines. (4) The hydrogen and oxygen isotopes of surface brine and intercrystaline brine show an “oxygen drift” phenomenon, with deuterium surplus values falling below zero. This is attributed to excessive fractionation induced by evaporation. The deuterium surplus value in intercrystaline is lower than that of surface brine, likely due to the dissolution and filtration of salt minerals.

参考文献

[1] 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
  [Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ]
[2] 杨晨曦, 李云霞, 李嘉燕, 等. 湘东北地区大气降水和地下水的氢氧稳定同位素研究[J]. 地球环境学报, 2024, 15(2): 326-341.
  [Yang Chenxi, Li Yunxia, Li Jiayan, et al. Variation of stable hydrogen and oxygen isotopes in precipitation and groundwater in northeast Hunan[J]. Journal of Earth Environment, 2024, 15(2): 326-341. ]
[3] 李晗薇, 姚俊强, 容韬, 等. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410.
  [Li Hanwei, Yao Junqiang, Rong Tao, et al. Characteristics of atmospheric precipitation isotope and path analysis of water vapor transport in the Taxkorgan River Basin Valley[J]. Arid Zone Research, 2024, 41(3): 399-410. ]
[4] Surma J, Assonov S, Bolourchi M J, et al. Triple oxygen isotope signatures in evaporated water bodies from the Sistan Oasis, Iran[J]. Geophysics Research Letter, 2015, 42(20): 8456-8462.
[5] 王雅璇, 肖蓓, 崔步礼, 等. 百脉泉泉群泉水氢氧稳定同位素时空变化特征[J]. 地球环境学报, 2024, 15(1): 69-77.
  [Wang Yaxuan, Xiao Bei, Cui Buli, et al. The spatiotemporal characteristics of hydrogen and oxygen stable isotopes of Baimai Spring Group[J]. Journal of Earth Environment, 2024, 15(1): 69-77. ]
[6] 雍亮, 冯民权. 长河流域δD、δ18O特征及水体补给关系[J]. 水文, 2023, 43(6): 79-85.
  [Yong Liang, Feng Minquan. Characteristics of δD and δ18O in Changhe River Basin and their recharge relationships[J]. Journal of China Hydrology, 2023, 43(6): 79-85. ]
[7] Gonfiantini R, Wassenaar L I, Araguas L, et al. A unified CraigGordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation[J]. Geochimica et Cosmochimica Acta, 2018, 235: 224-236.
[8] 赵祥宇, 陈菁, 王收, 等. 氢氧同位素组成对丰沛平原区水循环的指示意义[J]. 地球与环境, 2024, 52(1): 86-95.
  [Zhao Xiangyu, Chen Qing, Wang Shou, et al. Indicative significance of hydrogen and oxygen isotopic composition of water bodies in the Fengpei Plain to water cycle and evaporation[J]. Earth and Environment, 2024, 52(1): 86-95. ]
[9] 刘鑫, 向伟, 司炳成. 汾河流域浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J]. 环境科学, 2021, 42(4): 1739-1749.
  [Liu Xin, Xiang Wei, Si Bingcheng. Hydrochemical and isotopic characteristics in the shallow groundwater of the Fenhe River Basin and indicative significance[J]. Environmental Science, 2021, 42(4): 1739-1749. ]
[10] 赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素[J]. 环境科学, 2022, 43(10): 4440-4448.
  [Zhao Chunhong, Shen Haoyong, Wang Zhiheng, et al. Hydrochemica and isotopic characteristic in the surface water of the Fenhe River basin and influence factors[J]. Environmental Science, 2022, 43(10): 4440-4448. ]
[11] 苏绘梦, 张发旺, 侯甦予, 等. 基于水化学与氢氧稳定同位素的平禹矿区沉降区地下水循环变化解析[J]. 水文地质工程地质, 2023, 50(5): 53-67.
  [Su Huimeng, Zhang Fawang, Hou Suyu, et al. An analysis of groundwater circulation in the Pingyu mining area based on hydrochemical and isotopic characteristics of groundwater[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 53-67. ]
[12] Xiao Y, Liu K, Zhang Y Q, et al. Numerical investigation of groundwater flow systems and their evolution due to climate change in the arid Golmud river watershed on the Tibetan Plateau[J]. Frontiers in Earth Science, 2022, 10: 943075.
[13] Wang D, Han G L, Hu M M, et al. Evaporation processes in the upper river water of Three Gorges Reservoir: Evidence from triple oxygen isotopes[J]. ACS Earth and Space Chemistry, 2021, 5(10): 2807-2816.
[14] 徐忠宝, 杨丽萍, 翁白莎, 等. 青藏高原不同水体氢氧稳定同位素特征[J]. 南水北调与水利科技(中英文), 2024, 22(3): 521-533.
  [Xu Zhongbao, Yang Liping, Weng Baisha, et al. Stable isotopic characteristics of hydrogen and oxygen in different water bodies in the Qinghai-Tibet Plateau[J]. South-to-North Water Transfers and Water Science & Technology, 2024, 22(3): 521-533. ]
[15] Luz B, Barkan E. Variations of 17O/16O and 18O/16O in meteoric waters[J]. Geochimica et Cosmochimica Acta, 2010, 74(22), 6276-6286.
[16] 韩积斌, 张海云, 张宝云. 柴达木盆地那棱格勒河冲积扇浅层地下水的脆弱性评价[J]. 盐湖研究, 2023, 31(3): 10-17.
  [Han Jibin, Zhang Haiyun, Zhang Baoyun. Volnerability assessment of shallow groundwater of Nalenggele alluvial fan, Qaidam Basin[J]. Journal of Salt Lake Research, 2023, 31(3): 10-17. ]
[17] 李庆宽. 多指标约束下的那棱格勒河流域及其尾闾盐湖锂的物源与迁移富集规律研究[D]. 北京: 中国科学院大学, 2020.
  [Li Qingkuan. Multi-index Study on the Source, Migration and Enrichment of Lithium in the Nalenggele River Drainage and Terminal Lakes[D]. Beijing: University of Chinese Academy of Sciences, 2020. ]
[18] 徐威. 那棱格勒河冲洪积平原地下水循环模式及其对人类活动的响应研究[D]. 长春: 吉林大学, 2015.
  [Xu Wei. Groundwater Cycle Patterns and Its Response to Human Activities in Nalenggele Alluvial-Proluvial Plain[D]. Changchun: Jilin University, 2015. ]
[19] 谭红兵, 陆是成, 拓万全, 等. 柴达木盆地那棱格勒河流域的水资源与矿源意义[J]. 河海大学学报(自然科学版), 2020, 48(5): 392-397.
  [Tan Hongbing, Lu Shicheng, Tuo Wanquan, et al. Water resource and mineral source significances of Nalenggele River Catchment in Qaidam Basin[J]. Journal of Hohai University (Natural Sciences), 2020, 48(5): 392-397. ]
[20] 刘兆峰, 王建萍, 韩进军, 等. 基于SWAT模型的那棱格勒河流域径流模拟及水量平衡分析[J]. 盐湖研究, 2024, 32(1): 48-56.
  [Liu Zhaofeng, Wang Jianping, Han Jinjun, et al. Runoff simulation and water balance analysis in the Nalenggele River Basin using the SWAT Model[J]. Journal of Salt Lake Research, 2024, 32(1): 48-56. ]
[21] 李庆宽, 王建萍, 吴蝉, 等. 柴达木盆地那棱格勒河及其尾闾盐湖锂成矿物源: 来自水化学和锶、硫同位素证据[J]. 地质学报, 2021, 95(7): 2169-2182.
  [Li Qingkuan, Wang Jianping, Wu Chan, et al. Hydrochemistry and Sr-S isotope constraints on the source of lithium in the Nalenggele River and its terminal lakes, Qaidam Basin[J]. Acta Geologica Sinica, 2021, 95(7): 2169-2182. ]
[22] 朱建佳, 陈辉, 巩国丽. 柴达木盆地东部降水氢氧同位素特征与水汽来源[J]. 环境科学, 2015, 36(8): 2784-2790.
  [Zhu Jianjia, Chen Hui, Gong Guoli. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam Basin[J]. Environmental Science, 2015, 36(8): 2784-2790. ]
[23] 杨暖. 柴达木盆地东部地下水稳定同位素组成特征及其对水汽来源与气候变化的指示[D]. 北京: 中国地质大学(北京), 2021.
  [Yang Nuan. Characteristics of Groundwater Stable Isotopic Compositions in Eastern Qaidam Basin: Implications for Moisture Sources and Climate Change[D]. Beijing: China University of Geosciences (Beijing), 2021. ]
[24] 肖勇. 柴达木盆地南缘地下水循环演化模式及其变化趋势研究[D]. 北京: 中国地质大学(北京), 2018.
  [Xiao Yong. Groundwater Circulation Patternsand Itschange Trendin Southern Qaidam basin, Northwest China[D]. Beijing: China University of Geosciences (Beijing), 2018. ]
[25] 王兵, 秦西伟, 任二峰, 等. 柴北缘大柴旦地区地下热水成因:来自水化学及氢、氧、锶同位素的约束[J]. 矿物岩石地球化学通报, 2024, 43(1): 167-177.
  [Wang Bing, Qin Xiwei, Ren Erfeng, et al. Gensis of geothermal water in the Da Qaidam area, northern margin of the Qaidam Basin: Constraints from hydrochemistry and isotopes of hydrogen-oxygen-strontium[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(1): 167-177. ]
[26] 何启欣, 曹广超, 曹生奎, 等. 香日德-柴达木河流域水体氢氧稳定同位素特征及影响因素研究[J]. 干旱区研究, 2022, 39(3): 820-828.
  [He Qixin, Cao Guangchao, Cao Shengkui, et al. Hydrogen-oxygen isotope characteristics of water bodies in the Xiangride-Qaidam River Basin and its influencing factors[J]. Arid Zone Research, 2022, 39(3): 820-828. ]
[27] 党岩. 柴达木盆地塔塔凌河流域地下水循环演化模式[D]. 西安: 长安大学, 2020.
  [Dang Yan. The Model of Evolution and Circulation of Groundwater in the Tataling River Basin, Qaidam Basin[D]. Xi’an: Chang’an University, 2020. ]
[28] 郭亚文, 田富强, 胡宏昌, 等. 南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J]. 环境科学, 2020, 41(2): 682-690.
  [Guo Yawen, Tian Fuqiang, Hu Hongchang, et al. Characteristics and significance of stable isotopes and hydrochemistry in surface water and groundwater in Nanxiaohegou Basin[J]. Environmental Science, 2020, 41(2): 682-690. ]
[29] 王淑丽, 郑绵平, 王永明, 等. 中国盐湖地球化学发展历程与研究进展[J]. 科学技术与工程, 2019, 19(9): 1-9.
  [Wang Shuli, Zheng Mianping, Wang Yongming, et al. Advances and development history of geochemistry on salt lakes in China[J]. Science Technology and Engineering, 2019, 19(9): 1-9. ]
[30] 祁海平, 王蕴慧, 肖应凯, 等. 中国盐湖中硼同位素的初步研究[J]. 科学通报, 1993, 19(7): 634-637.
  [Qi Haiping, Wang Yunhui, Xiaoy Yingkai, et al. The preliminary study on boron isotopes in the salt lakes of China[J]. Chinese Science Bulletin, 1993, 19(7): 634-637. ]
[31] 李建森. 柴达木盆地卤水型 K、B、Li 资源富集和成矿机制[D]. 北京: 中国科学院大学, 2022.
  [Li Jiansen. Enrichment and Metallogenic Mechanism of the Brine-type K,B, Li Resources in the Qaidam Basin[D]. Beijing: University of Chinese Academy of Sciences, 2022. ]
[32] 李建森, 李廷伟, 马云麒, 等. 柴达木盆地卤水型Li、Rb关键金属矿产元素分布特征及富集机制[J]. 中国科学: 地球科学, 2022, 52(3): 474-485.
  [Li Jiansen, Li Tingwei, Ma Yunqi, et al. Distribution and origin of brine-type Li-Rb mineralization in the Qaidam Basin, NW China[J]. Scientia Sinica (Terrae), 2022, 52(3): 474-485. ]
[33] 卢鋆, 潘彤, 李永寿, 等. 柴达木盆地中部一里坪-西台吉乃尔地区深层卤水水化学特征及成因初探[J]. 地质学报, 2021, 95(7): 2129-2137.
  [Lu Jun, Pan Tong, Li Yongshou, et al. A preliminary investigation of hydrochemical characteristic and genesis of deep brine in the central Qaidam basin[J]. Acta Geologica Sinica, 2021, 95(7): 2129-2137. ]
[34] Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 2014, 380: 74-83.
[35] 饶文波, 李垚炜, 谭红兵, 等. 高寒干旱区降水氢氧稳定同位素组成及其水汽来源:以昆仑山北坡格尔木河流域为例[J]. 水利学报, 2021, 52(9): 1116-1125.
  [Rao Wenbo, Li Yaowei, Tan Hongbing, et al. Stable hydrogen-oxygen isotope composition and atmospheric moisture sources of precipitation in an arid-alpine region: A case study of the Golmud River Watershed on the north slope of the Kunlun Mountains[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1116-1125. ]
文章导航

/