梨园河流域景观格局对地表水质的影响
收稿日期: 2024-08-07
修回日期: 2024-09-11
网络出版日期: 2024-11-29
基金资助
国家自然科学基金项目(52169015);甘肃省重点研发计划(23YFFA0020);甘肃省2023年水利科研与技术推广项目(23GSLK032)
Impacts of landscape patterns on surface water quality in the Liyuan River Basin
Received date: 2024-08-07
Revised date: 2024-09-11
Online published: 2024-11-29
研究景观格局对内陆河水质的影响程度和机制对于干旱区内陆河流域水环境保护具有重要意义。本文以临泽县梨园河为研究对象,基于景观格局数据及实测水质数据,采用冗余分析和相关性分析探究了不同缓冲区下景观格局与水质之间的关系。结果显示:研究区水体总体符合Ⅱ类水质标准,除化学需氧量(CODCr)浓度均值处于Ⅲ类水质标准,溶解氧(DO)、总磷(TP)、高锰酸盐指数(CODMn)和氨氮(NH3-N)浓度均值满足Ⅱ类水质标准;缓冲区景观组成均以耕地为主,建设用地次之;对景观指数进行分析发现人类活动在缓冲区内强弱不均,100 m缓冲区内人类干扰程度最大。耕地面积占比与DO、TP、电导率(EC)、溶解性固体(TDS)、TP和盐度呈显著正相关,建设用地与TP和NH3-N呈显著正相关,最大斑块指数(LPI)、蔓延度指数(CONTAG)与水质指标呈正相关,斑块密度(PD)、边缘密度(ED)、景观形状指数(LSI)、香农多样性指数(SHDI)与水质指标呈负相关;冗余分析显示景观构成和景观指数对水质指标变化的解释率均在300 m缓冲区内最高,确定了300 m缓冲区是景观格局对水质指标影响的最佳缓冲区尺度。因此,通过优化300 m缓冲区内景观结构可提升景观对污染物的截留吸附能力,达到改善梨园河流域水质效果。
王昱 , 李能安 , 雒天峰 , 张英 , 袁兴鹏 , 田苗 , 信雅玲 , 胡飞燕 . 梨园河流域景观格局对地表水质的影响[J]. 干旱区研究, 2024 , 41(11) : 1831 -1841 . DOI: 10.13866/j.azr.2024.11.04
Studying the degree and mechanism of landscape pattern’s influence on inland river water quality is of great significance for the water environment protection of inland river basins in arid areas. This study was based on the Liyuan River in Linze County. We studied landscape pattern data and measured water quality, using redundancy and correlation analyses to investigate the relationship between landscape patterns and water quality in different buffer zones. The water bodies in the study area generally met the Class II water quality standard, except for the average value of the chemical oxygen demand (CODCr) concentration, which fell into Class III. Additionally, the average dissolved oxygen (DO), total phosphorus (TP), permanganate index (CODMn), and ammonia nitrogen (NH3-N) concentration values met the Class II water quality standard. The buffer zone’s landscape composition was dominated by arable land, and construction land was the second largest type. Analyzing the landscape index revealed that the strength of human activities was not evenly distributed in the buffer zone, and the degree of human interference was the greatest in the 100 m buffer zone. The human interference degree in the 100 m buffer zone was the greatest. The proportion of cultivated land was significantly and positively correlated with DO, TP, electrical conductivity (EC), dissolved solids (TDS), and salinity, while constructed land was significantly and positively correlated with TP and NH3-N. The largest patch index (LPI) and contagion index (CONTAG) were positively correlated with the water quality indicators, whereas patch density (PD), edge density (ED), landscape shape index (LSI), and Shannon’s diversity index (SHDI) were negatively correlated. Redundancy analysis indicated that the explanatory rate of the changes in the water quality indicators by the composition of the landscape and landscape indices was the highest in the 300 m buffer zone. The analysis indicated that the explanatory rate of landscape composition and index on water quality index changes were the highest in the 300 m buffer zone, and the 300 m buffer zone was determined to be the optimal buffer scale for landscape pattern’s influence on the water quality index. Therefore, optimizing the landscape structure within the 300 m buffer zone to enhance the retention and adsorption capacity of pollutants can improve the water quality of the Liyuan River.
Key words: correlation analysis; landscape pattern; water quality; Liyuan River
[1] | Li J Q, Shen Z Y, Cai J Y, et al. Copula-based analysis of socio-economic impact on water quantity and quality: A case study of Yitong River, China[J]. Science of the Total Environment, 2023, 859: 160176. |
[2] | Liu Z, Liu L, Li Y, et al. Influence of urban green space landscape pattern on river water quality in a highly urbanized river network of Hangzhou city[J]. Journal of Hydrology, 2023, 621: 129602. |
[3] | Peng S, Li S. Scale relationship between landscape pattern and water quality in different pollution source areas: A case study of the Fuxian Lake watershed, China[J]. Ecological Indicators, 2020, 121: 107136. |
[4] | Hu X, Wang H, Zhu Y, et al. Landscape characteristics affecting spatial patterns of water quality variation in a highly disturbed region[J]. International Journal of Environmental Research and Public Health, 2019, 16(12): 2149. |
[5] | 吕志强, 庆旭瑶, 任玉芬, 等. 山地城市河流土地利用结构对水质的影响——以重庆市为例[J]. 湖泊科学, 2016, 28(2): 319-327. |
[Lü Zhiqiang, Qing Xuyao, Ren Yufen, et al. Effects of land use pattern on water quality in mountainous city: A case study of Chongqing City[J]. Journal of Lake Sciences, 2016, 28(2): 319-327. ] | |
[6] | Mainali J, Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, the republic of Korea[J]. Journal of Hydrology, 2018, 564: 26-40. |
[7] | Wu J, Lu J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes[J]. Water Research, 2021, 191: 116811. |
[8] | Nafi’Shehab Z, Jamil N R, Aris A Z, et al. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia[J]. Ecological indicators, 2021, 122: 107254. |
[9] | 米秋菊, 边玉明, 甄立鹏, 等. 土地利用结构与景观格局对黎河水质的影响[J]. 水生态学杂志, 2024, 45(3): 78-85. |
[Mi Qiuju, Bian Yuming, Zhen Lipeng, et al. Impacts of land use structure and landscape pattern on water quality in Lihe River[J]. Journal of Hydroecology, 2024, 45(3): 78-85. ] | |
[10] | 胡琳, 李思悦. 不同空间尺度土地利用结构与景观格局对龙川江流域水质的影响[J]. 生态环境学报, 2021, 30(7): 1470-1481. |
[Hu Lin, Li v. Scale effects of land use structure and landscape pattern on water quality in the Longchuan River Basin[J]. Ecology and Environmental Sciences, 2021, 30(7): 1470-1481. ] | |
[11] | 方娜, 刘玲玲, 游清徽, 等. 不同尺度土地利用方式对鄱阳湖湿地水质的影响[J]. 环境科学, 2019, 40(12): 5348-5357. |
[Fang Na, Liu Lingling, You Qinghui, et al. Effects of land use types at different spatial scales on water quality in Poyang Lake Wetland[J]. Environmental Science, 2019, 40(12): 5348-5357. ] | |
[12] | 吕乐婷, 高晓琴, 刘琦, 等. 东江流域景观格局对氮、磷输出的影响[J]. 生态学报, 2021, 41(5): 1758-1765. |
[Lü Leting, Gao Xiaoqin, Liu Qi, et al. Influence of landscape pattern on nitrogen and phosphorus output in the Dongjiang River Basin[J]. Acta Ecologica Sinica, 2021, 41(5): 1758-1765. ] | |
[13] | 曹灿, 张飞, 阿依尼格尔·亚力坤, 等. 艾比湖区域景观格局与河流水质关系探讨[J]. 环境科学, 2018, 39(4): 1568-1577. |
[Cao Can, Zhang Fei, Ayinigeer Yalikun, et al. Relationship between landscape pattern and water quality in the Ebinur Lake region[J]. Environmental Science, 2018, 39(4): 1568-1577. ] | |
[14] | 张微微, 李晓娜, 王超, 等. 密云水库上游白河地表水质对不同空间尺度景观格局特征的响应[J]. 环境科学, 2020, 41(11): 4895-4904. |
[Zhang Weiwei, Li Xiaona, Wang Chao, et al. Water quality response to landscape pattern at different spatial scales in baihe river in the upper reaches of the Miyun Reservoir[J]. Environmental Science, 2020, 41(11): 4895-4904. ] | |
[15] | Hashemi F, Olesen J E, Dalgaard T, et al. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment[J]. Science of the Total Environment, 2016, 573: 608-626. |
[16] | 谭娟, 熊丽君, 王卿, 等. 不同时空尺度下土地利用结构与空间格局对苏州河水质的影响[J]. 环境科学, 2024, 45(2): 768-779. |
[Tan Juan, Xiong Lijun, Wang Qing, et al. Effects of land use structure and spatial pattern at different temporal and spatial scales on water quality in Suzhou Creek[J]. Environmental Science, 2024, 45(2): 768-779. ] | |
[17] | 张清寰, 齐识, 马金珠. 甘肃梨园河流域地下水来源及其水化学特征[J]. 干旱区研究, 2012, 29(5): 898-906. |
[Zhang Qinghuan, Qi Shi, Ma Jinzhu. The sources and hydrochemical properties of groundwater in the Liyuan River Basin, Gansu Province[J]. Arid Zone Research, 2012, 29(5): 898-906. ] | |
[18] | 顾洋, 张平究, 秦风约, 等. 多时空景观格局对南淝河水质的影响[J]. 农业环境科学学报, 2024, 43(7): 1580-1589. |
[Gu Yang, Zhang Pingjiu, Qin Fengyue, et al. Impact of multi-temporal and spatial landscape patterns on the water quality of the Nanfei River[J]. Journal of Agro-Environment Science, 2024, 43(7): 1580-1589. ] | |
[19] | 代孟均, 张兵, 杜倩倩, 等. 不同缓冲区的土地利用方式对地表水水质的影响: 以海河流域天津段为例[J]. 环境科学, 2024, 45(3): 1512-1524. |
[Dai Mengjun, Zhang Bing, Du Qianqian, et al. Effects of land use types on water quality at different buffer scales: Tianjin section of the Haihe River Basin as an example[J]. Environmental Science, 2024, 45(3): 1512-1524. ] | |
[20] | 吕乐婷, 郑晓宇, 刘琦, 等. 非点源污染对景观格局响应的空间尺度效应——以东北太子河流域为例[J]. 应用生态学报, 2024, 35(4): 1112-1122. |
[Lü Leting, Zheng Xiaoyu, Liu Qi, et al. Spatial scale effects of landscape patterns on non-point source pollution: A case study of Taizi River Basin in Northeast China[J]. Chinese Journal of Applied Ecology, 2024, 35(4): 1112-1122. ] | |
[21] | 项颂, 庞燕, 储昭升, 等. 入湖河流水质对土地利用时空格局的响应研究: 以洱海北部流域为例[J]. 环境科学, 2016, 37(8): 2947-2956. |
[Xiang Song, Pang Yan, Chu Zhaosheng, et al. Response of inflow water quality to land use pattern in northern watershed of Lake Erhai[J]. Environmental Science, 2016, 37(8): 2947-2956. ] | |
[22] | 王小平, 张飞, 李晓航, 等. 艾比湖区域景观格局空间特征与地表水质的关联分析[J]. 生态学报, 2017, 37(22): 7438-7452. |
[Wang Xiaoping, Zhang Fei, Li Xiaohang, et al. Correlation analysis between the spatial characteristics of land use/cover landscape pattern and surface-water quality in the Ebinur Lake area[J]. Acta Ecologica Sinica, 2017, 37(22): 7438-7452. ] | |
[23] | Li K, Chi G, Wang L, et al. Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality[J]. Ecological Indicators, 2018, 93: 741-752. |
[24] | 胡艳芳, 范中亚, 陈昭婷, 等. 汕头市练江流域景观格局与水质的关联分析[J]. 中国环境监测, 2021, 37(3): 126-133. |
[Hu Yanfang, Fan Zhongya, Chen Zhaoting, et al. Correlation analysis between landscape pattern and water quality in the Lianjiang River watershed in Shantou City[J]. Environmental Monitoring in China, 2021, 37(3): 126-133. ] | |
[25] | Ding J, Jiang Y, Liu Q, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis[J]. Science of the Total Environment, 2016, 551: 205-216. |
[26] | 周俊菊, 向鹃, 王兰英, 等. 祁连山东部冰沟河流域景观格局与河流水化学特征关系[J]. 生态学杂志, 2019, 38(12): 3779-3788. |
[Zhou Junju, Xiang Juan, Wang Lanying, et al. Relationship between landscape pattern and hydrochemical characteristics of Binggou River Basin in eastern Qilian Mountains[J]. Chinese Journal of Ecology, 2019, 38(12): 3779-3788. ] | |
[27] | 张旭达, 韩谞, 孙长顺, 等. 无定河及延河流域不同时空尺度下土地利用对水质的影响[J]. 环境科学, 2024, 45(8): 4540-4552. |
[Zhang Xuda, Han Xu, Sun Changshun, et al. Effects of landscape pattern on water quality at different spatial and temporal scales in Wuding River Basin and Yanhe River Basin[J]. Environmental Science, 2024, 45(8): 4540-4552. ] | |
[28] | 乔郭亮, 周寅康, 顾铮鸣, 等. 苏南地区景观格局特征与坑塘水质关联关系[J]. 农业工程学报, 2021, 37(10): 224-234. |
[Qiao Guoliang, Zhou Yinkang, Gu Zhengming, et al. Analysis of the linkage between landscape pattern and the water quality of ponds in Southern Jiangsu of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 224-234. ] | |
[29] | 胡和兵, 刘红玉, 郝敬锋, 等. 南京市九乡河流域景观格局空间分异对河流水质的影响[J]. 环境科学, 2012, 33(3): 794-801. |
[Hu Hebing, Liu Hongyu, Hao Jingfeng, et al. Influence of spatial difference on water quality in Jiuxiang River Watershed, Nanjing[J]. Environmental Science, 2012, 33(3): 794-801. ] | |
[30] | Jiang Y, Xie Z, Zhang H, et al. Effects of land use types on dissolved trace metal concentrations in the Le’an River Basin, China[J]. Environmental Monitoring and Assessment, 2017, 189: 1-19. |
[31] | 徐明珠, 徐国策, 乔海亮, 等. 秦岭南麓小流域不同空间尺度景观格局对水质的影响分析[J]. 环境科学学报, 2023, 43(10): 396-406. |
[Xu Mingzhu, Xu Guoce, Qiao Hailiang, et al. Influence of different spatial scale landscape patterns on water quality in a small watershed at the southern foot of the Qinling Mountains[J]. Acta Scientiae Circumstantiae, 2023, 43(10): 396-406. ] | |
[32] | 张鹏, 刘慧, 王为木, 等. 东南山丘区水库流域多空间尺度景观格局对水质的影响[J]. 水生态学杂志, 2023, 44(3): 17-25. |
[Zhang Peng, Liu Hui, Wang Weimu, et al. Effects of multi-spatial scale landscape patterns on water quality in the reservoir basin of the southeastern hilly region[J]. Journal of Hydroecology, 2023, 44(3): 17-25. ] | |
[33] | Marmontel C V F, Lucas-Borja M E, Rodrigues V A, et al. Effects of land use and sampling distance on water quality in tropical headwater springs (Pimenta creek, S?o Paulo State, Brazil)[J]. Science of the Total Environment, 2018, 622: 690-701. |
[34] | Shigaki F, Sharpley A, Prochnow L I. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays[J]. Science of the Total Environment, 2007, 373(1): 334-343. |
[35] | 杨强强, 徐光来, 杨先成, 等. 青弋江流域土地利用/景观格局对水质的影响[J]. 生态学报, 2020, 40(24): 9048-9058. |
[Yang Qiangqiang, Xu Guanglai, Yang Xiancheng, et al. Responses of water quality to land use & landscape pattern in the Qingyijiang River watershed[J]. Acta Ecologica Sinica, 2020, 40(24): 9048-9058. ] |
/
〈 | 〉 |