天气与气候

基于改进S-W模型的南小河沟流域蒸散发分配及控制机制

  • 杨楠 ,
  • 宋孝玉 ,
  • 邓建伟 ,
  • 李蓝君 ,
  • 赵新凯 ,
  • 孟鹏飞 ,
  • 符冲 ,
  • 魏婉茵 ,
  • 张育斌 ,
  • 丁林 ,
  • 李浩霖
展开
  • 1.甘肃省水利科学研究院,甘肃 兰州 73000
    2.西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西 西安 710048
    3.北京工业大学,北京 100124
杨楠(1997-),男,硕士研究生,主要从事水土保持、生态水文学研究. E-mail: 15379010323@163.com
宋孝玉. E-mail: songxy@xaut.edu.cn

收稿日期: 2024-05-12

  修回日期: 2024-06-26

  网络出版日期: 2024-11-29

基金资助

甘肃省重点研发计划项目(22YF7FA081);陕西省自然科学基础研究计划项目(2023-JC-ZD-30);陕西省自然科学基础研究计划项目(2019JZ-45);甘肃省水利科研与技术推广计划项目(24GSLK007);甘肃省水利科研与技术推广计划项目(23GSLK012);甘肃省水利科研与技术推广计划项目(23GSLK013)

Research on the distribution and control mechanism of evapotranspiration in the Nanxiaohegou watershed based on an improved S-W model

  • YANG Nan ,
  • SONG Xiaoyu ,
  • DENG Jianwei ,
  • LI Lanjun ,
  • ZHAO Xinkai ,
  • MENG Pengfei ,
  • FU Chong ,
  • WEI Wanyin ,
  • ZHANG Yubin ,
  • DING Lin ,
  • LI Haolin
Expand
  • 1. Gansu Academy for Water Conservancy, Lanzhou 73000, Gansu, China
    2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
    3. Beijing University of Technology, Beijing 100124, China

Received date: 2024-05-12

  Revised date: 2024-06-26

  Online published: 2024-11-29

摘要

精准量化蒸散发(ET)及组分并探明其控制因子,有利于合理评价及规划管理区域水资源。根据黄土高原水土保持治理典型小流域南小河沟流域2016—2020年连续性长期观测数据及野外试验,基于改进的S-W(Shuttleworth-Wallace)模型,模拟典型人工林地ET及组分动态变化,并利用结构方程模型(Structural Equation Modeling,SEM)分析植物蒸腾(T)、土壤蒸发(E)与控制因子间的耦合关系。结果表明:(1) 改进的S-W模型在南小河沟流域适用性较好,其中土壤表面抗阻力( r s s)的阈值为50~2500 s·m-1,与土壤表层含水量(θ)经验函数类型为指数型,土壤颗粒中沙粒含量越大,线型斜率越大。(2) 典型人工林地ET范围为276.76~402.86 mm,多年平均TEET的51.6%和48.4%,ETTE规律为各月间变化不明显,但日间波动剧烈,TE波动趋势基本一致,与年降雨量变化一致,和次降雨表现滞后性。(3) SEM分析净辐射(Rn)、气温(Ta)、θET影响最为显著,其中RnT影响最大(总影响为0.614),TaE影响最大(总影响为0.426);TE体现为正相关,贡献系数达0.503。基于改进的S-W模型对ET进行评价及组分分离,为深刻揭示干旱半干旱区生态水文过程提供依据。

本文引用格式

杨楠 , 宋孝玉 , 邓建伟 , 李蓝君 , 赵新凯 , 孟鹏飞 , 符冲 , 魏婉茵 , 张育斌 , 丁林 , 李浩霖 . 基于改进S-W模型的南小河沟流域蒸散发分配及控制机制[J]. 干旱区研究, 2024 , 41(11) : 1819 -1830 . DOI: 10.13866/j.azr.2024.11.03

Abstract

In this study, we aimed to accurately quantify evapotranspiration (ET) and its components while exploring the factors that control it, which will facilitate the practical evaluation, planning, and management of regional water resources. Utilizing continuous long-term observation data and field tests conducted from 2016 to 2020 in the Nanxiaohegou watershed—a typical small watershed for water and soil conservation on the Loess Plateau—this study simulated the dynamic changes of ET and its components in typical plantation land using the improved Shuttleworth-Wallace (S-W) model. Additionally, we analyzed the coupling relationships between plant transpiration (T), soil evaporation (E), and control factors using a structural equation model. The results revealed the following: (1) The modified S-W model was effective for evaluating ET and its components in Nanxiaohe Valley. The threshold value of soil surface resistance ( r s s) was 50-2500 s·m-1, exhibiting an exponential relationship with the empirical function of soil surface water content (θ); moreover, higher sand content in the soil particles correlated with a steeper linear slope. (2) ET ranged from 276.76 mm to 402.86 mm in typical plantation land, with annual averages of T and E accounting for 51.6% and 48.4% of ET, respectively. While monthly ET, T, and E patterns were not pronounced, daily fluctuations were significant. The fluctuation trends of T and E largely reflected annual precipitation patterns but lagged behind rainfall. (3) Structural equation modeling analysis revealed that net radiation (Rn), temperature (Ta), and θ exerted the most significant effects on ET, with Rn having the largest impact on T (total impact of 0.614) and Ta having the most significant impact on E (total impact of 0.426). T was positively correlated with E, with a contribution coefficient of 0.503. Evaluating ET and its components using an improved S-W model establishes a foundation for a deeper understanding of ecological and hydrological processes in arid and semiarid regions.

参考文献

[1] 康利刚, 曹生奎, 曹广超, 等. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372.
  [Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Temporal and spatial variation of evapotranspiration in Shaliuhe River Basin of Qinghai Lake[J]. Arid Zone Research, 2023, 40(3): 358-372. ]
[2] 李蓝君, 宋孝玉, 夏露, 等. 黄土高原沟壑区典型造林树种蒸散发对气候变化的响应[J]. 农业工程学报, 2018, 34(20): 148-159.
  [Li Lanjun, Song Xiaoyu, Xia Lu, et al. Response of evaporation of typical afforestation tree species to climate change in gully area of Loess Plateau[J]. Journal of Agricultural Engineering, 2018, 34(20): 148-159. ]
[3] 庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130.
  [Zhuang Haoran, Feng Kepeng, Xu Dehao. Changes and influencing factors of water use efficiency of maize by evapotranspiration[J]. Arid Zone Research, 2023, 40(7): 1117-1130. ]
[4] Kell B W, Paul J H, Patrick J M, et al. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001, 106: 153-168.
[5] Gharsallah O, Facchi A, Gandolfi C. Comparison of six evapotranspiration models for a surface irrigated maize agroecosystem in northern Italy[J]. Agricultural Water Management, 2013, 130: 119-130.
[6] 卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589.
  [Lu Baobao, Sun Huilan, Jiang Quanquan, et al. Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021, 38(6): 1579-1589. ]
[7] 段利民, 童新, 吕扬, 等. 固沙植被黄柳、小叶锦鸡儿蒸腾耗水尺度提升研究[J]. 自然资源学报, 2018, 33(1): 52-62.
  [Duan Limin, Tong Xin, Lv Yang, et al. Study on the enhancement of water consumption scale of sand-fixing vegetation Salix koreensis and Cotoneaster horizontalis[J]. Journal of Natural Resources, 2018, 33(1): 52-62. ]
[8] 王宇, 周莉, 贾庆宇, 等. 基于Shuttleworth-Wallace模型的水稻蒸散组分模拟及其特征分析[J]. 中国农业气象, 2017, 38(11): 709-719.
  [Wang Yu, Zhou Li, Jia Qingyu, et al. Simulation and characteristic analysis of rice evapotranspiration components based on Shuttleworth-Wallace model[J]. Chinese Journal of Agrometeorology, 2017, 38(11): 709-719. ]
[9] 包永志, 刘廷玺, 段利民, 等. 基于Shuttleworth-Wallace模型的科尔沁沙地流动半流动沙丘蒸散发模拟[J]. 应用生态学报, 2019, 30(3): 867-876.
  [Bao Yongzhi, Liu Tingxi, Duan Limin, et al. Evaporation simulation of mobile semi-mobile dunes in Horqin Sandland based on Shuttleworth-Wallace model[J]. Journal of Applied Ecology, 2019, 30(3): 867-876. ]
[10] Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111: 839-855.
[11] Ortega F S, Poblete E C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural and Forest Meteorology, 2010, 150: 276-286.
[12] 李艳, 刘海军, 黄冠华. 麦秸覆盖条件下土壤蒸发阻力及蒸发模拟[J]. 农业工程学报, 2015, 31(1): 98-106.
  [Li Yan, Liu Haijun, Huang Guanhua. Soil evaporation resistance and evaporation simulation under wheat straw mulch[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 98-106. ]
[13] 刘春伟, 曾勰婷, 邱让建. 用分时段修正双源模型估算南京地区冬小麦生育期蒸散量[J]. 农业工程学报, 2016, 32(增刊): 80-87.
  [Liu Chunwei, Zeng Xieting, Qiu Rangjian. Estimation of evapotranspiration of winter wheat during growth period in Nanjing using time-segmentated modified dual-source model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(Suppl. ): 80-87. ]
[14] 胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
  [Hu Guanglu, Liu Peng, Li Jianan, et al. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2024, 41(4): 550-565. ]
[15] 赵丽雯, 赵文智, 吉喜斌. 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律[J]. 生态学报, 2015, 35(4): 1114-1123.
  [Zhao Liwen, Zhao Wenzhi, Ji Xibin. Differentiation of crop transpiration and soil evaporation in the farmland oasis of the middle reaches of Heihe River in northwest China and the law of crop water consumption[J]. Acta Ecologica Sinica, 2015, 35(4): 1114-1123. ]
[16] 姚佳, 陈启慧, 李琼芳, 等. 伊犁河—巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子[J]. 干旱区研究, 2022, 39(5): 1564-1575.
  [Yao Jia, Chen Qihui, Li Qiongfang, et al. Spatial and temporal variation of actual evapotranspiration and its environmental impact factors in the Ili River-Balkhash Lake Basin[J]. Arid Zone Research, 2022, 39(5): 1564-1575. ]
[17] 魏宁宁, 母艳梅, 姜晓燕, 等. 毛乌素沙地油蒿-杨柴灌丛生态系统蒸散组分分配及其影响因子[J]. 应用生态学报, 2021, 32(7): 2407-2414.
  [Wei Ningning, Mu Yanmei, Jiang Xiaoyan, et al. Distribution of evapotranspiration components and its influencing factors in Artemisia ordosica shrub ecosystem in Mu Us Sandy Land[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2407-2414. ]
[18] 雷菲亚, 李小双, 陶冶, 等. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820.
  [Lei Feiya, Li Xiaoshuang, Tao Ye, et al. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China[J]. Arid Zone Research, 2024, 41(5): 812-820. ]
[19] Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models[J]. Monthly Weather Review, 1989, 117: 536-549.
[20] 周静, 孙永峰, 丁杰萍, 等. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464.
  [Zhou Jing, Sun Yongfeng, Ding Jieping, et al. Changes in vegetation biomass and its relationship with soil carbon during restoration processes in degraded sandy grasslands[J]. Arid Zone Research, 2023, 40(9): 1457-1464. ]
[21] Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1976, 273: 593-610.
[22] 崔建国. 黄土半干旱区林木水分生理特性与土壤水分关系研究[D]. 北京: 北京林业大学, 2012.
  [Cui Jianguo. Relationship Between forest Water Physiological Characteristics and Soil Water In Loess Semi-arid Region[D]. Beijing: Beijing Forestry University, 2012. ]
[23] Zhao P, Li S, Tong S L, et al. Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of Northwest China[J]. Agricultural Water Management, 2015, 160: 41-56
[24] 乔英, 马英杰, 辛明亮. 基于改进S-W与结构方程模型的干旱区枣园蒸散特征分析[J]. 农业机械学报, 2021, 52(8): 307-317.
  [Qiao Ying, Ma Yingjie, Xin Mingliang. Evapotranspiration characteristics of Jujube orchard in arid region based on improved S-W and Structural Equation model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 307-317. ]
[25] Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest[J]. Agricultural and Forest Meteorology, 2008, 148: 1629-1640
[26] Chen H, Huang J J, Mcbean E. Partitioning of daily evapotranspiration using a modified Shuttleworth-Wallace model, random Forest and support vector regression, for a cabbage farmland[J]. Agricultural Water Management, 2020, 228: 105923.
[27] 张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(4): 270-278.
  [Zhang Ruiwen, Zhao Chengyi, Wang Dandan, et al. Ecological water consumption characteristics of poplar forest under different water conditions in extreme arid region[J]. Journal of Soil and Water Conservation, 2019, 33(4): 270-278. ]
[28] Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural and Forest Meteorology, 2009, 149: 1410-1420.
[29] Kang S, Gu B, Du T. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in semi-humid region[J]. Agricultural Water Management, 2007, 59: 239-254.
[30] Zhu G F, Su Y H, Li X, et al. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach[J]. Journal of Hydrology, 2013, 476: 42-51.
[31] 刘国水, 刘钰, 蔡甲冰, 等. 农田不同尺度蒸散量的尺度效应与气象因子的关系[J]. 水利学报, 2011, 42(3): 284-289.
  [Liu Guoshui, Liu Yu, Cai Jiabing, et al. Relationship between scale effects of evapotranspiration at different scales and meteorological factors in farmland[J]. Journal of Hydraulic Engineering, 2011, 42(3): 284-289. ]
[32] 吴友杰, 杜太生. 西北干旱区农田土壤蒸发量及影响因子分析[J]. 农业工程学报, 2020, 36(12): 110-116.
  [Wu Youjie, Du Taisheng. Analysis of soil evaporation and its influencing factors in arid area of Northwest China[J]. Journal of Agricultural Engineering, 2020, 36(12): 110-116. ]
[33] 刘丽霞, 王辉, 孙栋元, 等. 绿洲农田防护林系统土壤蒸发特征研究[J]. 干旱区资源与环境, 2008, 11(1): 162-166.
  [Liu Lixia, Wang Hui, Sun Dongyuan, et al. Study on soil evaporation characteristics of oasis farmland shelterbelt system[J]. Journal of Arid Land Resources and Environment, 2008, 11(1): 162-166. ]
[34] Goyal R K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan[J]. Agricultural Water Management, 2004, 69: 1-11.
[35] 杨文静, 赵建世, 赵勇, 等. 基于结构方程模型的蒸散发归因分析[J]. 清华大学学报, 2022, 62(3): 581-588.
  [Yang Wenjing, Zhao Jianshi, Zhao Yong, et al. Evapotranspiration attribution analysis based on structural equation model[J]. Journal of Tsinghua University, 2022, 62(3): 581-588. ]
文章导航

/