不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响
收稿日期: 2024-01-05
修回日期: 2024-08-06
网络出版日期: 2024-10-14
基金资助
新疆农业科学院自主培育项目“不同土地利用方式对土壤有机碳组分及土壤微生物量碳氮的影响”(nkyzzkj-013);新疆农业科学院农业科技创新稳定支持专项课题(xjnkywdzc-2023002);中央引导地方科技发展专项资金项目(YDZX20186500001910)
Effects of different land-use methods on the organic carbon composition and soil microbial biomass carbon of farmland soil
Received date: 2024-01-05
Revised date: 2024-08-06
Online published: 2024-10-14
研究不同土地利用方式下农田土壤有机碳组分及微生物量碳的含量特征对指导伊犁河谷土壤资源的合理利用与管理具有重要意义。通过野外实地调查、样品采集、室内分析与地统计相结合的方法,研究伊犁河谷旱地、水浇地、水田、果园、撂荒地5种土地利用方式土壤有机碳(SOC)、颗粒有机碳(POC)、可溶性有机碳(DOC)、轻组有机碳(LFOC)、易氧化有机碳(EOC)和微生物量碳(MBC)的含量特征,比较分析土地利用变化对伊犁河谷农田土壤有机碳组分及微生物量碳的影响。结果表明:土壤TN、AN、AP和AK含量均表现为:水田>水浇地>旱地>果园>撂荒地;水田土壤养分含量显著高于其他4种土地利用方式;土壤SOC含量具有明显的差异特征,主要体现为:水田(25.62 g·kg-1)>旱地(13.80 g·kg-1)>水浇地(12.19 g·kg-1)>果园(11.58 g·kg-1)>撂荒地(8.81 g·kg-1),且均达到显著性差异水平(P<0.05)。土壤SOC、DOC、POC、LFOC、MBC含量均呈现出:水田>旱地>水浇地>果园>撂荒地的特征,其差异达到极显著水平,而EOC含量则表现为:水田>水浇地>旱地>果园>撂荒地的特征,其差异达到极显著水平。水田土壤SOC、DOC、POC、LFOC、MBC、EOC含量均显著高于其他4种利用方式。5种土地利用方式土壤SOC与POC、LFOC、DOC之间存在极显著的正相关,其相关系数分别为0.622,0.36,0.489(P<0.01),说明土壤SOC含量是影响土壤POC、LFOC和DOC含量的重要因素。
李娜 , 信会男 , 赖宁 , 李永福 , 吕彩霞 , 耿庆龙 , 段婧婧 , 陈署晃 . 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响[J]. 干旱区研究, 2024 , 41(10) : 1789 -1796 . DOI: 10.13866/j.azr.2024.10.16
Investigating the content characteristics of organic carbon components and microbial biomass carbon in farmland soil under different land-use methods is of considerable significance for guiding the rational utilization and management of soil resources in the Ili River Valley. By combining field investigations, sample collection, indoor analysis, and geostatistics, this study explored the content characteristics of soil SOC, POC, DOC, LFOC, EOC, and MBC in five land-use types, including dryland, irrigated land, paddy field, orchard, and abandoned land in the Ili River Valley. This study compared and analyzed the effects of land-use changes on soil organic carbon components and microbial biomass carbon in farmland in the Ili River Valley. Results showed that the contents of TN, AN, AP, and AK in soil were in the order of paddy field>irrigated land>dryland>orchard>fallow land. The nutrient content of paddy soil was significantly higher than that of the other four land-use types. The soil SOC content showed significant differences, primarily reflected in paddy fields (25.62 g·kg-1)>dryland (13.80 g·kg-1)>irrigated land (12.19 g·kg-1)>orchards (11.58 g·kg-1)>abandoned land (8.81 g·kg-1), and all reached a significant difference level (P<0.05). The contents of soil SOC, DOC, POC, LFOC, and MBC showed the characteristics of paddy field>dryland>irrigated land>orchard>abandoned land, with significant differences. The EOC content showed the characteristics of paddy field>irrigated land>dryland>orchard>abandoned land, with significant differences. The contents of SOC, DOC, POC, LFOC, MBC, and EOC in paddy soil were significantly higher than those in the other four land-use types. A highly significant positive correlation was detected between soil SOC and POC, LFOC, and DOC in the five land-use types, with the correlation coefficients being 0.622, 0.36, and 0.489, respectively (P<0.01), indicating that soil SOC content is an important factor affecting soil particulate organic carbon, light organic carbon, and soluble organic carbon contents.
[1] | 孙涛, 冯晓敏, 高新昊, 等. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56(15): 2929-2940. |
[Sun Tao, Feng Xiaomin, Gao Xinhao, et al. Effects of diversified cropping on the soil aggregate composition and organic carbon and total nitrogen content[J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.] | |
[2] | 章晓芳, 郑生猛, 夏银行, 等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 2020, 41(3): 1466-1473. |
[Zhang Xiaofang, Zheng Shengmeng, Xia Yinhang, et al. Responses of soil organic carbon fractions to land use types in hilly red soil regions, China[J]. Environmental Science, 2020, 41(3): 1466-1473.] | |
[3] | 尤俊坚. 污泥生物质炭对豫东黄泛区风沙土质量影响及评价研究[D]. 南京: 南京林业大学, 2023. |
[You Junjian. Influence of Sewage Sludge Biochar-mediated on Sandy SoiImprovement and Its Evaluation on the Yudong Plain[D]. Nanjing: Nanjing Forestry University, 2023.] | |
[4] | 李菡, 袁红, 宋洪福, 等. 不同利用方式土壤有机碳及其组分研究进展[J]. 江西农业学报, 2020, 32(8): 57-63. |
[Li Han, Yuan Hong, Song Hongfu, et al. Research advance in soil organic carbon and its components by different utilization mode[J]. Acta Agriculturae Jiangxi, 2020, 32(8): 57-63.] | |
[5] | 房飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究[J]. 生态环境学报, 2013, 22(11): 1774-1779. |
[Fang Fei, Tang Haiping, Li Binyong. Effects of land use type on soil organic carbon and its fractions[J]. Ecology and Environmental Sciences, 2013, 22(11): 1774-1779.] | |
[6] | 刘红宜, 陈冲, 卢瑛, 等. 珠江三角洲平原农田土壤有机碳组分及剖面分布特征[J]. 土壤通报, 2017, 48(2): 399-405. |
[Liu Hongyi, Chen Chong, Lu Ying, et al. Characteristics of organic C fractions and its distribution in soil profiles of cultivated land in pearl river delta plain[J]. Chinese Journal of Soil Science, 2017, 48(2): 399-405.] | |
[7] | 郝海波, 许文霞, 侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响[J]. 植物营养与肥料学报, 2023, 29(5): 860-875. |
[Hao Haibo, Xu Wenxia, Hou Zhenan. Effects of coupled water and nitrogen on soil organie carbon fractionsand enzymes in a drip-irrigated cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 860-875.] | |
[8] | 张黎黎. 沂河流域不同土地利用方式下土壤有机碳、氮及其组分特征[D]. 济南: 山东师范大学, 2022. |
[Zhang Lili. Characteristics of Soil Organic Carbon, Nitrogen and Its Fractions under Different Land Use in the Yihe River Basin[D]. Jinan: Shandong Normal University, 2022.] | |
[9] | 贾重建, 刘红宜, 卢瑛, 等. 土地利用方式对土壤有机碳和团聚体组分特征的影响[J]. 热带地理, 2014, 34(5): 681-689. |
[Jia Chongjian, Liu Hongyi, Lu Ying, et al. Effects of land use patterns on soil organic carbon and aggregate fractions[J]. Tropical Geography, 2014, 34(5): 681-689.] | |
[10] | 张一鹤. 不同土地利用方式下黑土团聚体及有机碳组分特征[D]. 哈尔滨: 东北农业大学, 2018. |
[Zhang Yihe. Characteristics of Soil Aggregates and Organic Carbon Components in Black Soil under Different Land Uses[D]. Harbin: Northeast Agricultural University, 2018.] | |
[11] | 罗由林. 城郊农地利用方式转变对土壤有机碳稳定及核心微生物的影响[D]. 雅安: 四川农业大学, 2022. |
[Luo Youlin. Effects of Agricultural Land Use Change on Soil Organic Carbonstability and Core Microbial Communities in Suburban Area[D]. Ya’an: Sichuan Agricultural University, 2022.] | |
[12] | 杨桦, 彭小瑜, 杨淑琪, 等. 滇南喀斯特断陷盆地土地利用方式对土壤有机碳及其活性组分的影响[J]. 生态学报, 2022, 42(17): 7105-7117. |
[Yang Hua, Peng Xiaoyu, Yang Shuqi, et al. Effects of land use types on soil organic carbon and soil labile organic carbon in karst faulted basin of Southern Yunnan[J]. Acta Ecologica Sinica, 2022, 42(17): 7105-7117.] | |
[13] | 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23): 7625-7633. |
[Xiao Ye, Huang Zhigang, Wu Haitao, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625-7633.] | |
[14] | 刘强, 梁鑫, 董佩丽, 等. 不同施肥措施对黄土丘陵区农田土壤有机碳组分和碳库管理指数的影响[J]. 土壤, 2023, 55(2): 446-452. |
[Liu Qiang, Liang Xin, Dong Peili, et al. Effects of different fertilization methods on farmland soil active organic carbon and carbon pool management indicators in loess hily area[J]. Soils, 2023, 55(2): 446-452.] | |
[15] | 李娜, 陈署晃, 赖宁, 等. 基于GIS和地统计的伊犁州农田土壤养分空间变异特征分析[J]. 新疆农业科学, 2019, 56(11): 2096-2103. |
[Li Na, Chen Shuhuang, Lai Ning, et al. Spatial variation characteristics of farmland soil nutrients in Yili Prefecture based on GIS and geographic statistics[J]. Xinjiang Agricultural Sciences, 2019, 56(11): 2096-2103.] | |
[16] | 杨长明, 欧阳竹, 杨林章, 等. 农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J]. 生态学报, 2006, 26(12): 4148-4155. |
[Yang Changming, Ouyang Zhu, Yang Linzhang, et al. Organic carbon fractions and aggreqate stability in an aquatic soil as influenced byagricultural land uses in the Northern China Plain[J]. Acta Ecologica Sinica, 2006, 26(12): 4148-4155.] | |
[17] | 胡尧, 李懿, 侯雨乐. 岷江流域不同土地利用方式对土壤有机碳组分及酶活性的影响[J]. 生态环境学报, 2018, 27(9): 1617-1624. |
[Hu Yao, Li Yi, Hou Yule. The variation of soil organic carbon fractions and soil enzyme activity of different land use types in Minjiang River Valley[J]. Ecology and Environmental Sciences, 2018, 27(9): 1617-1624.] | |
[18] | 张恩月, 郑君焱, 苏迎庆, 等. 基于情景模拟的流域低碳土地利用格局优化研究——以汾河流域为例[J]. 干旱区研究, 2023, 40(2): 203-212. |
[Zhang Enyue, Zheng Junyan, Su Yingqing, et al. Optimization of low-carbon land use pattern based on scenario simulation: A Casestudy of Fenhe River Basin[J]. Arid Zone Research, 2023, 40(2): 203-212.] | |
[19] | 马继龙, 史军辉, 王新英, 等. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257. |
[Ma Jilong, Shi Junhui, Wang Xinying, et al. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River[J]. Arid Zone Research, 2023, 40(8): 1248-1257.] | |
[20] | 雷馨, 海新权. 祁连山地区土地利用变化对碳储量的影响及经济价值估算[J]. 干旱区研究, 2023, 40(11): 1845-1854. |
[Lei Xin, Hai Xinquan. Impacts ofland use change on carbon storage and estimation of economic value in Qilian Mountain Region[J]. Arid Zone Research, 2023, 40 (11): 1845-1854.] | |
[21] | 祁心, 江长胜, 郝庆菊, 等. 缙云山不同土地利用方式对土壤活性有机碳、氮组分的影响[J]. 环境科学, 2015, 36(10): 3816-3824. |
[Qi Xin, Jiang Changsheng, Hao Qingju, et al. Effects of different land uses on soil active organic carbon and nitrogen fractions in Jinyun Mountain[J]. Environmental Science, 2015, 36(10): 3816-3824.] | |
[22] | 汪明霞, 朱志锋, 刘凡, 等. 江汉平原不同土地利用方式下农田土壤有机碳组成特点[J]. 水土保持研究, 2012, 19(6): 24-28. |
[Wang Mingxia, Zhu Zhifeng, Liu Fan, et al. Composition characteristics of soil organie carbon under land use change in Jianghan Plain, Hubei Province[J]. Research of Soil and Water Conservation, 2012, 19(6): 24-28.] | |
[23] | Basile-Doelsch I, Balesdent J, Pellerin S. Reviews and syntheses: The mechanisms underlying carbon storage in soil[J]. Biogeosciences, 2020, 17(21): 5223-5242. |
[24] | 姜文婷, 高翔菲, 宋锦浩, 等. 不同土地利用方式土壤有机碳组分及微生物群落对植物残体输入的响应[J]. 土壤通报, 2023, 54(4): 831-839. |
[Jiang Wenting, Gao Xiangfei, Song Jinhao, et al. Responses of organic carbon fractions and microbial communities to plant residues under different land use patterns[J]. Chinese Journal of Soil Science, 2023, 54(4): 831-839.] | |
[25] | 李忠徽, 魏彬萌, 刘丹, 等. 黄绵土中碳酸钙含量和有机肥施用对土壤有机碳组分及CO2排放的影响[J]. 环境科学学报, 2018, 38(6): 2498-2505. |
[Li Zhonghui, Wei Binmeng, Liu Dan, et al. Effect of calcium carbonate content and composted manure application on soil organic carbon fractions and CO2 emissions in loessal soil[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2498-2505.] | |
[26] | Bongiorno G, Bünemann E K, Oguejiofor C U, et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe[J]. Ecological Indicators, 2019, 99: 38-50. |
[27] | Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168(1): 241-257. |
[28] | 陈高起, 傅瓦利, 沈艳, 等. 岩溶区不同土地利用方式对土壤有机碳及其组分的影响[J]. 水土保持学报, 2015, 29(3): 123-129. |
[Chen Gaoqi, Fu Wali, Shen Yan, et al. Effects of different land use on soil organic carbon and its components in Karst Areas[J]. Journal of Soil and Water Conservation, 2015, 29(3): 123-129.] | |
[29] | 胡玉福, 彭佳佳, 蒋双龙, 等. 川中丘陵区不同土地利用方式土壤活性有机碳含量特征研究[J]. 水土保持学报, 2014, 28(2): 221-225. |
[Hu Yufu, Peng Jiajia, Jiang Shuanglong, et al. Study on soil active organic carbon in different land use patterns of the Middle Sichuan Region[J]. Journal of Soil and Water Conservation, 2014, 28(2): 221-225.] | |
[30] | 安申群, 贡璐, 李杨梅, 等. 塔里木盆地北缘绿洲4种土地利用方式土壤有机碳组分分布特征及其与土壤环境因子的关系[J]. 环境科学, 2018, 39(7): 3382-3390. |
[An Shenqun, Gong Lu, Li Yangmei, et al. Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the Northern Tarim Basin[J]. Environmental Science, 2018, 39(7): 3382-3390.] | |
[31] | Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N min-eralizationl[J]. Soil Biology and Biochemistry, 1995, 27(8): 1099-1108. |
[32] | 张晓东, 李忠, 张峰. 新疆艾比湖地区不同土地利用类型土壤养分及活性有机碳组分研究[J]. 水土保持研究, 2017, 24(5): 55-62. |
[Zhang Xiaodong, Li Zhong, Zhang Feng. Variation of soil nutrients and soil active organie carbon under different land use patterns in aibinur ake region of Xinjiang[J]. Research of Soil and Water Conservation, 2017, 24(5): 55-62.] | |
[33] | Qiu Liping, Zhang Qian, Zhu Hansong, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 24(1): 2474-2489. |
[34] | 蒿廉伊. 控制降水对黄土高原西部荒漠草原土壤有机碳组分及其稳定性的影响[D]. 兰州: 西北师范大学, 2023. |
[Hao Lianyi. Effects of Manipulated Precipitation on Soil Organic Carbon and Its Stability in Desert Steppe of Western Loess Plateau[D]. Lanzhou: Northwest Normal University, 2023.] | |
[35] | 周涛, 史培军, 王绍强. 气候变化及人类活动对中国土壤有机碳贮量的影响[J]. 地理学报, 2003, 58(5): 727-734. |
[Zhou Tao, Shi Peijun, Wang Shaoqiang. The impact of climate change and human activities on soil organic carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.] | |
[36] | 李菊, 王琴, 孙辉. 海拔梯度对川西高寒土壤轻组分有机碳动态影响研究[J]. 水土保持研究, 2015, 22(1): 51-55. |
[Li Ju, Wang Qin, Sun Hui. Temporal dynamics of light-fraction organic carbon of subalpine-alpine soil alongan altitudinal gradient in the Southwestern China[J]. Research of Soil and Water Conservation, 2015, 22(1): 51-55.] |
/
〈 | 〉 |