植物生态

青藏高原植被光能利用效率时空变化

  • 其美拉姆 ,
  • 郑诚 ,
  • 袁浏欢 ,
  • 吴沛桐 ,
  • 谭凯 ,
  • 申乔天 ,
  • 史海静
展开
  • 1.西藏拉萨市曲水县农业农村局,西藏 拉萨 850699
    2.西北农林科技大学草业与草原学院,陕西 杨凌 712100
    3.西北农林科技大学水土保持研究所,陕西 杨凌 712100
    4.中国科学院水土保持与生态环究中心,陕西 杨凌 712100
其美拉姆(1992-),女,畜牧师,主要研究方向为牧草逆境与草地修复. E-mail: 1051927567@qq.com
郑诚. E-mail: zhengcheng@nwafu.edu.cn

收稿日期: 2024-02-21

  修回日期: 2024-07-09

  网络出版日期: 2024-10-14

基金资助

国家自然科学基金项目(41501055);国家科技基础条件平台建设项目(2005DKA2300)

Spatial-temporal dynamics of vegetation light use efficiency and its driving factors on the Qinghai-Xizang Plateau

  • QIMEI Lamu ,
  • ZHENG Cheng ,
  • YUAN Liuhuan ,
  • WU Peitong ,
  • TAN Kai ,
  • SHEN Qiaotian ,
  • SHI Haijing
Expand
  • 1. Agriculture and Rural Affairs Bureau of Qushui County, Lhasa 850699, Xizang, China
    2. College of Grassland Agriculture, Northwest A & F University, Yangling 712100, Shaanxi, China
    3. Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
    4. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China

Received date: 2024-02-21

  Revised date: 2024-07-09

  Online published: 2024-10-14

摘要

研究青藏高原植被光能利用效率(Light Use Efficiency,LUE)时空变化特征对确定陆地生态系统碳汇和未来功能维持具有重要的生态价值和现实意义。本研究利用1982—2018年GLASS数据以及气候数据,采用趋势分析和偏相关分析方法,探究了青藏高原植被光能利用效率年际动态变化特征及其与温度、降雨、饱和水汽压差(Vapor Pressure Deficit,VPD)和太阳辐射的关系。结果表明:(1) 1982—2018年,青藏高原植被生态系统LUE总体上呈显著线性增长趋势,增长速率为3.16×10-3 g C·MJ-1·a-1。(2) 青藏高原植被生态系统LUE空间分布具有较强的异质性,表现为由西向东递增的空间分布格局。由趋势分析结果可知,中部和东北部地区LUE年际增长趋势明显。(3) 相较降水和VPD等因子,温度与植被LUE年际变化的关系更为密切。本研究成果能够为揭示青藏高原植被生态系统对气候变化的响应提供依据。

本文引用格式

其美拉姆 , 郑诚 , 袁浏欢 , 吴沛桐 , 谭凯 , 申乔天 , 史海静 . 青藏高原植被光能利用效率时空变化[J]. 干旱区研究, 2024 , 41(10) : 1731 -1739 . DOI: 10.13866/j.azr.2024.10.11

Abstract

Investigating the spatial-temporal variation characteristics of vegetation light-use efficiency on the Qinghai-Xizang Plateau has important ecological value and practical significance for determining the carbon sink and future function maintenance of terrestrial ecosystems. This study was conducted to explore the interannual dynamic variation characteristics of vegetation light-use efficiency on the Qinghai-Xizang Plateau and its relationship with temperature, rainfall, VPD, and solar radiation using GLASS data and climate data from 1982 to 2018 and trend analysis and partial correlation analysis methods. Results showed that (1) From 1982 to 2018, the LUE of the Qinghai-Xizang Plateau vegetation ecosystem generally exhibited a significant linear growth trend, with a growth rate of 3.16×10-3 g C·MJ-1·a-1. (2) The spatial distribution of LUE in the Qinghai-Xizang Plateau vegetation ecosystem had strong spatial heterogeneity, exhibiting an increasing spatial trend from west to east. The trend analysis revealed an obvious interannual growth trend of LUE in the central and northeastern regions. (3) Temperature was more closely related to interannual changes in the LUE of vegetation than factors such as precipitation and VPD. This study provides a basis for revealing the response of the Qinghai-Xizang Plateau vegetation ecosystem to climate change.

参考文献

[1] Qiu Jane. The third pole[J]. Nature, 2008, 454: 393-396.
[2] 王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021, 28(4): 70-82.
  [Wang Jun, Zhang Xiao, Gao Yan. The relationships betwen vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progres and prospect[J]. Earth Science Frontiers, 2021, 28(4): 70-82.]
[3] An Shuai, Chen Xiaoqiu, Zhang Xiaoyang, et al. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau[J]. Remote Sensing, 2020, 12(3): 431.
[4] Pei Yanyan, Dong Jinwei, Zhang Yao, et al. Evolution of light use efficiency models: Improvement, uncertainties, and implications[J]. Agricultural and Forest Meteorology, 2022, 317: 108905.
[5] 方浩玲, 程先富, 秦丽. 安徽省植被净初级生产力估算——基于改进的CASA模型[J]. 生态学报, 2024, 44(4): 1601-1612.
  [Fang Haoling, Cheng Xianfu, Qin Li. Estimation of net primary productivity of vegetation in Anhui Province based on improved CASA Model[J]. Acta Ecologica Sinica, 2024, 44(4): 1601-1612.]
[6] 郭建茂, 郭彩云, 李羚, 等. 基于地面通量观测与MODIS数据估算玉米光能利用率[J]. 气象科学, 2023, 43(2): 186-195.
  [Guo Jianmao, Guo Caiyun, Li Ling, et al. Retrieval of light use efficiency of maize based on surface flux observation and MODIS data[J]. Journal of the Meteorological Science, 2023, 43(2): 186-195.]
[7] Wang Yu, Zhou Guangsheng. Light use efficiency over two temperate steppes in Inner Mongolia, China[J]. Plos One, 2012, 7(8): e43614.
[8] Huang Kun, Wang Shaoqiang, Zhou Lei, et al. Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on eddy covariance observation in China[J]. Plos One, 2014, 9(11): e110988.
[9] Yuan Liuhuan, Zhang Tianyou, Yao Hongbin, et al. Altered trends in light use efficiency of grassland ecosystem in Northern China[J]. Remote Sensing, 2023, 15: 5275.
[10] 徐铭泽, 刘鹏, 田赟, 等. 毛乌素沙地油蒿叶性状对光能利用效率动态的影响[J]. 生态学报, 2023, 43(12): 5122-5136.
  [Xu Mingzhe, Liu Peng, Tian Yun, et al. Seasonal response of light use efficiency of Artemisia ordosica to leaf traits in Mu Us sandy land[J]. Acta Ecologica Sinica, 2023, 43(12): 5122-5136.]
[11] 钱钊晖, 王绍强, 周国逸, 等. 冠层结构对亚热带常绿林光能利用效率估算的影响[J]. 自然资源学报, 2019, 34(3): 613-623.
  [Qian Zhaohui, Wang Shaoqiang, Zhou Guoyi, et al. Assessing canopy structure effect on the estimation of light-use efficiency in a subtropical evergreen forest[J]. Journal of Natural Resources, 2019, 34(3): 613-623.]
[12] Gao Dexin, Wang Shuai, Wang Lixin, et al. Enhanced coupling of light use efficiency and water use efficiency in arid and semi-arid environments[J]. Ecohydrology, 2022, 15(5): e2391.
[13] 唐可欣, 郭建斌, 何亮, 等. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973.
  [Tang Kexin, Guo Jianbin, He Liang, et al. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands[J]. Arid Zone Research, 2024, 41(6): 964-973.]
[14] 山建安, 朱睿, 尹振良, 等. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729.
  [Shan Jianan, Zhu Rui, Yin Zhengliang, et al. Spatial and temporal variation of drought in Northwest China based on CMIP6 model[J]. Arid Zone Research, 2024, 41(5): 717-729.]
[15] Li Lanhui, Zhang Yili, Wu Jianshuang, et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2019, 678: 21-29.
[16] 王雪莹, 谷黄河, 代斌, 等. 不同水平分辨率区域气候模式对青藏高原气候特征模拟[J]. 干旱区研究, 2024, 41(3): 363-374.
  [Wang Xueying, Gu Huanghe, Dai Bin, et al. Simulation of climate characteristics in the Qinghai-Tibet Plateau by regional climate models at different horizontal resolutions[J]. Arid Zone Research, 2024, 41(3): 363-374.]
[17] Yuan Wenping, Zheng Yi, Piao Shilong, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): 1396.
[18] Zhang Tianyou, Chen Zhi, Zhang Weikang, et al. Long-term trend and interannual variability of precipitation-use efficiency in eurasian grasslands[J]. Ecological Indicators, 2021, 130: 108091.
[19] 朱先进, 于贵瑞, 何洪林, 等. 2002—2010年中国典型生态系统辐射及光能利用效率数据集[J]. 中国科学数据: 中英文网络版, 2019, 4(1): 97-109.
  [Zhu Xianjin, Yu Guirui, He Honglin, et al. Radiation and light-use efficiency dataset of typical Chinese ecosystems (2002-2010)[J]. Science Data Bank, 2019, 4(1): 97-109.]
[20] 康雄, 曹俊涛, 陈成, 等. 不同趋势法的宁夏长时序植被变化分析[J]. 测绘通报, 2020(11): 23-27.
  [Kang Xiong, Cao Juntao, Cheng Cheng, et al. Analysis of long-term vegetation change in Ningxia with different trend methods[J]. Bulletin of Surveying and Mapping, 2020(11): 23-27.]
[21] 曲学斌, 王彦平, 高绍鑫, 等. 2000—2020年呼伦贝尔地区归一化植被指数时空变化及其对气候的响应[J]. 气象与环境学报, 2022, 38(5): 57-63.
  [Qu Xuebin, Wang Yanping, Gao Shaoxin, et al. Temporal and spatial change of NDVI and its response to climatic conditions in Hulun Buir region from 2000 to 2020[J]. Journal of Meteorology and Environment, 2022, 38(5): 57-63.]
[22] Piao Shilong, Chen Mengdi, Chen Anping, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151: 1599-1608.
[23] 曹晓云, 周秉荣, 周华坤, 等. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象, 2022, 40(6): 1068-1080.
  [Cao Xiaoyun, Zhou Binrong, Zhou Huakun, et al. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau[J]. Journal of Arid Meteorology, 2022, 40(6): 1068-1080.]
[24] Shen Miaogen, Piao Shilong, Jeong Sujong, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences, 2015, 112(30): 9299-9304.
[25] Piao Shilong, Wang Xuhui, Park Taejin, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1: 14-27.
[26] 同琳静, 刘洋洋, 王倩, 等. 青藏高原植被降水利用效率时空动态及对气候变化的响应[J]. 干旱地区农业研究, 2019, 37(5): 226-234.
  [Tong Linjing, Liu Yangyang, Wang Qian, et al. Spatial-temporal dynamics of precipitation use efficiency in grassland and its elationship with climate changes on Qinghai-Tibet Plateau[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 226-234.]
[27] 陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10): 2511-2527.
  [Chen Shuting, Guo Bin, Yang Fei, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015[J]. Journal of Natural Resources, 2020, 35(10): 2511-2527.]
[28] Liu Jiafeng, Lu Yaqing. How well do CMIP6 models simulate the greening of the Tibetan Plateau?[J]. Remote Sensing, 2022, 14(18): 4633.
[29] Fei Xuehui, Song Qinghai, Zhang Yiping, et al. Patterns and controls of light use efficiency in four contrasting forest ecosystems in Yunnan, Southwest China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(2): 293-311.
[30] 王鸿艺, 汪东川, 王思润, 等. 青藏高原不同季节植被NPP空间分异的定量归因[J]. 水土保持学报, 2023, 37(3): 225-232.
  [Wang Hongyi, Wang Dongchuan, Wang Sirun, et al. Quantitative attribution of spatial variability of NPP in different seasons of Qinghai-Tibet Plateau[J]. Journal of Soiland Water Conservation, 2023, 37(3): 225-232.]
[31] 王志鹏, 张宪洲, 何永涛, 等. 降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响[J]. 应用生态学报, 2018, 29(6): 1822-1828.
  [Wang Zhipeng, Zhang Xianzhou, He Yongtao, et al. Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on northern Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1822-1828.]
[32] 邓彤彤, 周国英, 肖元明, 等. 长期降水变化和氮添加对青藏高原高寒草原物种多样性和生产力的影响[J]. 草地学报, 2024, 32(5): 1448-1458.
  [Deng Tongtong, Zhou Guoying, Xiao Yuanming, et al. Effects of long-term precipitation changes and nitrogen addition on species diversity and productivity of alpine grasslands in the Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 2024, 32(5): 1448-1458.]
[33] 管琪卉, 丁明军, 张华敏. 青藏地区高寒草地春季物候时空变化及其对气候变化的响应[J]. 山地学报, 2019, 37(5): 639-648.
  [Guan Qihui, Ding Mingjun, Zhang Huamin. Spatiotemporal variation of spring phenology in alpine grassland and response to climate changes on the Qinghai-Tibet, China[J]. Mountain Research, 2019, 37(5): 639-648.]
[34] 范灵悦, 马晓燕, 赵剑琦. 近几十年青藏高原与华北地区地表太阳辐射变化特征及其影响因素的对比分析[J]. 气象科学, 2024(2): 254-266.
  [Fan Lingyue, Ma Xiaoyan, Zhao Jianqi. A comparative analysis of surface solar radiation change and its influencing factors during past few decades over Tibetan Plateau and North China[J]. Journal of the Meteorological Sciences, 2024, 44(2): 254-266.]
[35] 王金兰, 王小军, 刘文辉, 等. 不同放牧方式对高寒草甸植物群落关键种的影响[J]. 生态学报, 2024, 44(15): 1-11.
  [Wang Jinlan, Wang Xiaojun, Liu Wenhui, et al. Effects of different grazing regime on the keystone species of plant community in alpine meadow[J]. Acta Ecologica Sinica, 2024, 44(15): 1-11.]
文章导航

/