天气与气候

新疆及周边中亚地区土地覆盖变化对地表反照率的影响

  • 许赟红 ,
  • 刘琼 ,
  • 陈勇航 ,
  • 魏鑫 ,
  • 刘鑫 ,
  • 张太西 ,
  • 邵伟玲 ,
  • 杨何群 ,
  • 张丞铭
展开
  • 1.东华大学环境科学与工程学院,上海 201620
    2.新疆维吾尔自治区气候中心,新疆 乌鲁木齐 830002
    3.上海市生态气象和卫星遥感中心,上海 200030
许赟红(2000-),女,硕士研究生,主要从事地理遥感研究. E-mail: yunhongxu@mail.dhu.edu.cn
陈勇航. E-mail: yonghangchen@dhu.edu.cn

收稿日期: 2024-05-07

  修回日期: 2024-08-02

  网络出版日期: 2024-10-14

基金资助

上海合作组织科技伙伴计划及国际科技合作计划项目(2022E01047);国家自然科学基金重点项目(42030612);国家自然科学基金重点项目(41675026);国家自然科学基金重点项目(41375021)

Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region

  • XU Yunhong ,
  • LIU Qiong ,
  • CHEN Yonghang ,
  • WEI Xin ,
  • LIU Xin ,
  • ZHANG Taixi ,
  • SHAO Weiling ,
  • YANG Hequn ,
  • ZHANG Chengming
Expand
  • 1. School of Donghua University of Environmental Science and Engineering, Shanghai 201620, China
    2. Xinjiang Uygur Autonomous Region Climate Center, Urumqi 830002, Xinjiang, China
    3. Shanghai Ecological Meteorology and Satellite Remote Sensing Center, Shanghai 200030, China

Received date: 2024-05-07

  Revised date: 2024-08-02

  Online published: 2024-10-14

摘要

基于MODIS MCD12C1土地覆盖和MCD43C3地表反照率数据,分析2002—2021年新疆及周边中亚地区土地覆盖和地表反照率时空分布特征并探讨土地覆盖变化对地表反照率的影响。结果表明:(1) 土地覆盖净变化以裸地和耕地减少、林地和草地增长为主要特征,总变化最大的是草地。塔里木盆地四周裸地转为草地变化明显,中亚中部干旱区草地灌丛化问题严重。(2) 裸地转为草地、草地转为林地分别导致地表反照率减少0.006、增长0.009,草地灌丛化导致地表反照率增长0.012。草地转为裸地对地表反照率的影响最大,变化量为0.015,耕地和草地相互转变对地表反照率的影响最小,变化量<0.001。(3) 2006—2011年地表反照率变化最明显,显著变化量达34.87%。(4)干旱区地表反照率变化显著于其他区域,且林地的地表反照率高于草地和耕地,导致三者间转变的地表反照率变化趋势区别于其他区域。

本文引用格式

许赟红 , 刘琼 , 陈勇航 , 魏鑫 , 刘鑫 , 张太西 , 邵伟玲 , 杨何群 , 张丞铭 . 新疆及周边中亚地区土地覆盖变化对地表反照率的影响[J]. 干旱区研究, 2024 , 41(10) : 1649 -1661 . DOI: 10.13866/j.azr.2024.10.04

Abstract

Based on MODIS MCD12C1 land cover and MCD43C3 surface albedo data, we investigated the spatial and temporal distribution characteristics of land cover and surface albedo in Xinjiang and its surrounding Central Asian region from 2002 to 2021. We also discuss the impact of land cover change on surface albedo. Results demonstrated that (1) The net change of land cover was primarily characterized by the decrease of barren land and cropland and the increase of woodland and grassland, and the largest change was in grassland. The change of barren land around the Tarim Basin into grassland was obvious, and the problem of shrub encroachment in the arid area of Central Asia was serious. (2) The conversion of barren land into grassland and grassland into woodland resulted in a decrease of surface albedo by 0.006 and an increase of surface albedo by 0.009, respectively. The conversion of shrub encroachment resulted in an increase of surface albedo by 0.012. The conversion of grassland into barren and exerted the largest impact on surface albedo, with a change of 0.015. The mutual transformation of cropland and grassland exerted the least impact on surface albedo, with a change of <0.001. (3) The change in surface albedo was the most obvious from 2006 to 2011, with the proportion of significant change being 34.87%. (4) The change in surface albedo in the arid area was significantly higher than that in other regions, and the surface albedo in woodland was higher than that in grassland and cropland, due to which the change trend in the three land types was different from that in other regions.

参考文献

[1] Loarie S R, Lobell D B, Asner G P, et al. Direct impacts on local climate of sugar-cane expansion in Brazil[J]. Nature Climate Change, 2011, 1(2): 105-109.
[2] Sun Y, Zhang X B, Ren G Y, et al. Contribution of urbanization to warming in China[J]. Nature Climate Change, 2016, 6(7): 706-709.
[3] 肖登攀, 陶福禄, Moiwo J P. 全球变化下地表反照率研究进展[J]. 地球科学进展, 2011, 26(11): 1217-1224.
  [Xiao Dengpan, Tao Fulu, Moiwo J P. Research progress on surface albedo under global change[J]. Advances in Earth Science, 2011, 26(11): 1217-1224.]
[4] Liang S L. Narrowband to broadband conversions of land surface albedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
[5] Williamson S N, Barrio I C, Hik D S, et al. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic[J]. Global Change Biology, 2016, 22(11): 3621-3631.
[6] 帅艳民, 陈杨杨, 邵聪颖, 等. 东北三省地表覆被变化对太阳辐射吸收的影响[J/OL]. 地球环境学报, 1-22[2024-08-26]. http://kns.cnki.net/kcms/detail/61.1482.X.20230705.1356.002.html.
  [Shuai Yanmin, Chen Yangyang, Shao Congying, et al. Effect of ground cover changes on solar radiation absorption in three northeastern provinces of China[J/OL]. Journal of Earth Environment, 1-22[2024-08-26]. http://kns.cnki.net/kcms/detail/61.1482.X.20230705.1356.002.html.]
[7] 石莹, 别强, 苏晓杰, 等. 中国西北地区地表覆被变化对太阳辐射吸收的影响[J/OL]. 自然资源遥感, 1-11[2024-08-26]. http://kns.cnki.net/kcms/detail/10.1759.P.20240125.1638.006.html.
  [Shi Ying, Bie Qiang, Su Xiaojie, et al. Effects of land cover change on solar radiation absorption in Northwest China[J/OL]. Remote Sensing for Natural Resources, 1-11[2024-08-26]. http://kns.cnki.net/kcms/detail/10.1759.P.20240125.1638.006.html.]
[8] 孙彦旭, 周自翔, 米朝娟. 基于土地利用覆被变化(LUCC)的人类活动与流域生物多样性灰色关联分析[J]. 干旱区研究, 2021, 38(6): 1782-1792.
  [Sun Yanxu, Zhou Zixiang, Mi Chaojuan. Grey correlation analysis of human activities and watershed biodiversity based on land use and cover change[J]. Arid Zone Research, 2021, 38(6): 1782-1792.]
[9] 陈海山, 张耀存, 张文君, 等. 中国极端天气气候研究——“地球系统与全球变化”重点专项项目简介及最新进展[J]. 大气科学学报, 2024, 47(1): 23-45.
  [Chen Haishan, Zhang Yaocun, Zhang Wenjun, et al. Research on weather and climate extremes over China: brief introduction and recent progress of the National Key P & D Program of China for Earth System and Global Change[J]. Transactions of Atmospheric Sciences, 2024, 47(1): 23-45.]
[10] 侯文兵, 李开明, 黄卓. 近20 a河西地区绿洲效应时空变化特征及归因分析[J]. 干旱区研究, 2023, 40(12): 2031-2042.
  [Hou Wenbing, Li Kaiming, Huang Zhuo. Characterization of spatial and temporal changes in the oasis effect and attribution analysis of the Hexi region in the last 20 years[J]. Arid Zone Research, 2023, 40(12): 2031-2042.]
[11] 孙桂丽, 陆海燕, 郑佳翔, 等. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 2022, 39(1): 258-269.
  [Sun Guili, Lu Haiyan, Zheng Jiaxiang, et al. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 2022, 39(1): 258-269.]
[12] 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12.
  [Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12.]
[13] 范泽孟, 李赛博. 新亚欧大陆桥经济走廊土地覆被变化及驱动力分析[J]. 生态学报, 2019, 39(14): 5015-5027.
  [Fan Zemeng, Li Saibo. Change pattern of land cover and its driving force since 2001 in the New Eurasian Continental Bridge Economic Corridor[J]. Acta Ecologica Sinica, 2019, 39(14): 5015-5027.]
[14] 海凯, 王思远, 涂平, 等. “一带一路”沿线国家1992年—2015年土地覆盖变化的时空格局及其驱动力分析[J]. 遥感学报, 2022, 26(6): 1220-1235.
  [Hai Kai, Wang Siyuan, Tu Ping, et al. Spatio-temporal patterns and driving forces of recent(1992-2015)land cover change in countries along the Belt and Road Initiative[J]. National Remote Sensing Bulletin, 2022, 26(6): 1220-1235.]
[15] 姚彤, 张强. 我国北方不同类型下垫面地表反照率特征[J]. 物理学报, 2014, 63(8): 460-468.
  [Yao Tong, Zhang Qiang. Study on land-surface albedo over different types of underlying surfaces in North China[J]. Acta Physica Sinica, 2014, 63(8): 460-468.]
[16] 刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
  [Liu Qinqin, Cui Yaoping, Liu Sujie, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1): 46-56.]
[17] Saher R, Stephen H, Ahmad S. Effect of land use change on summertime surface temperature, albedo, and evapotranspiration in Las Vegas Valley[J]. Urban Climate, 2021, 39: 100966.
[18] 陈杨杨. 典型地表覆被变化对地表反照率的影响[D]. 阜新: 辽宁工程技术大学, 2023.
  [Chen Yangyang. Effect of Typical Ground Cover Changes on Surface Albedo[D]. Fuxin: Liaoning Technical University, 2023.]
[19] 何娟. 土地利用变化导致的地表反照率变化及其辐射效应研究[D]. 北京: 中国气象科学研究院, 2020.
  [He Juan. Changes of Surface Albedo and Its Radiation Effects Caused by Land Use Change[D]. Beijing: Chinese Academy of Meteorological Sciences, 2020.]
[20] 郑瑜晗, 黄麟, 翟俊, 等. 陆地表层覆盖变化对地表反照率影响的四国对比[J]. 遥感学报, 2020, 24(7): 917-932.
  [Zheng Yuhan, Huang Lin, Zhai Jun, et al. Impacts of land cover changes on surface albedo in China, the United States, India and Brazil[J]. Journal of Remote Sensing, 2020, 24(7): 917-932.]
[21] Zhai J, Liu R G, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010[J]. Journal of Geographical Sciences, 2014, 24(5): 789-801.
[22] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1): 168-182.
[23] Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1): 135-148.
[24] Wang Z P, Wu J S, Niu B, et al. Vegetation expansion on the Tibetan Plateau and its relationship with climate change[J]. Remote Sensing, 2020, 12(24): 4150.
[25] Magistrali I C, Delgado R C, dos Santos G L, et al. Performance of CCCma and GFDL climate models using remote sensing and surface data for the state of Rio de Janeiro-Brazil[J]. Remote Sensing Applications Society and Environment, 2021, 21: 100446.
[26] 刘瑞, 朱道林. 基于转移矩阵的土地利用变化信息挖掘方法探讨[J]. 资源科学, 2010, 32(8): 1544-1550.
  [Liu Rui, Zhu Daolin. Methods for detecting land use changes based on the land use transition matrix[J]. Resource Science, 2010, 32(8): 1544-1550.]
[27] 任正超, 朱华忠, 柳小妮. 年际尺度上土地覆盖类型时空分异及其对气候和地形的响应[J]. 农业工程学报, 2012, 28(15): 205-214.
  [Ren Zhengchao, Zhu Huazhong, Liu Xiaoni. Spatio-temporal differentiation of land covers on annual scale and its response to climate and topography in arid and semi-arid region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15): 205-214.]
[28] 陈爱军, 梁学伟, 卞林根, 等. 青藏高原地区 MODIS 反照率的精度分析[J]. 大气科学学报, 2012, 35(6): 664-672.
  [Chen Aijun, Liang Xuewei, Bian Lingen, et al. Assessment on the accuracy of MODIS albedos over the Tibetan Plateau[J]. Transactions of Atmospheric Sciences, 2012, 35(6): 664-672.]
[29] Schaaf C B, Liu J C, Gao F, et al. Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products[M]. New York: Springer: Land Remote Sensing and Global Environmental Change, 2010: 549-561.
[30] 王开存, 刘晶淼, 周秀骥, 等. 利用 MODIS 卫星资料反演中国地区晴空地表短波反照率及其特征分析[J]. 大气科学, 2004, 28(6): 941-949.
  [Wang Kaicun, Liu Jingmiao, Zhou Xiuji, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 941-949.]
[31] 陈爱军, 孟文童, 胡慎慎, 等. 青藏高原 MODIS 地表反照率和 GLASS 地表反照率的对比分析[J]. 大气科学学报, 2020, 43(5): 932-942.
  [Chen Aijun, Meng Wentong, Hu Shenshen, et al. Comparative analysis on land surface albedo from MODIS and GLASS over the Tibetan Plateau[J]. Transactions of Atmospheric Sciences, 2020, 43(5): 932-942.]
[32] Van Auken O W. Shrub invasions of North American semiarid grasslands[J]. Annual Review of Ecology and Systematics, 2000, 31: 197-215.
[33] 张井勇, 何静, 张丽霞, 等. 面向碳中和的“一带一路”气候变化主要特征与灾害风险研究[J]. 中国科学院院刊, 2023, 38(9): 1371-1386.
  [Zhang Jingyong, He Jing, Zhang Lixia, et al. Main climate change characteristics and disaster risks oriented towards carbon neutrality over the Belt and Road regions[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(9): 1371-1386.]
[34] 陈敏鹏, 李玉婷, 代晶晶. 气候变化对“一带一路”主要地区的影响及其适应技术需求[J]. 西北大学学报(自然科学版), 2021, 51(4): 643-654.
  [Chen Minpeng, Li Yuting, Dai Jingjing. Climate change impacts on major regions along the Belt and Road and technology need for adaptations[J]. Journal of Northwest University(Natural Science Edition), 2021, 51(4): 643-654.]
[35] 梁萍萍. 喀斯特地区植被变化与地表反照率响应特征研究[D]. 贵阳: 贵州师范大学, 2021.
  [Liang Pingping. A Study on Response Characteristics of Vegetation Change and Surface Albedo in Karst Area[D]. Guiyang: Guizhou Normal University, 2021.]
[36] 张亚峰, 王新平, 潘颜霞, 等. 荒漠地区地表反照率与土壤湿度相关性研究[J]. 中国沙漠, 2011, 31(5): 1141-1148.
  [Zhang Yafeng, Wang Xinping, Pan Yanxia, et al. The dependence of surface albedo on soil moisture in an arid desert area[J]. Journal of Desert Research, 2011, 31(5): 1141-1148.]
[37] 彭海英, 李小雁, 童绍玉. 干旱半干旱区草原灌丛化研究进展[J]. 草业学报, 2014, 23(2): 313-322.
  [Peng Haiying, Li Xiaoyan, Tong Shaoyu. Advance in shrub encroachment in arid and semiarid region[J]. Acta Prataculturala Sinica, 2014, 23(2): 313-322.]
[38] 高琼, 刘婷. 干旱半干旱区草原灌丛化的原因及影响——争议与进展[J]. 干旱区地理, 2015, 38(6): 1202-1212.
  [Gao Qiong, Liu Ting. Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue[J]. Arid Land Geography, 2015, 38(6): 1202-1212.]
[39] Jurena P N, Archer S. Woody plant establishment and spatial heterogeneity in grasslands[J]. Ecology, 2003, 84(4): 907-919.
[40] Shen X J, Liu Y W, Liu B H, et al. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern[J]. Agricultural and Forest Meteorology, 2022, 320: 108943.
文章导航

/