植物生态

大兴安岭南段蒙古栎粗根非结构性碳对不同坡向的响应

  • 刘艺伟 ,
  • 魏江生 ,
  • 黄利东 ,
  • 赵鹏武 ,
  • 舒洋 ,
  • 李慧敏 ,
  • 曹立春 ,
  • 张婷
展开
  • 1.内蒙古农业大学草原与资源环境学院,内蒙古 呼和浩特 010011
    2.内蒙古自治区土壤质量与养分资源重点实验室,内蒙古 呼和浩特 010011
    3.内蒙古赛罕乌拉森林生态系统国家定位观测研究站,内蒙古 赤峰 024000
    4.内蒙古农业大学林学院,内蒙古 呼和浩特 010011
刘艺伟(1999-),女,硕士研究生,主要从事森林土壤研究. E-mail: 1120645078@qq.com
魏江生. E-mail: weijiangsheng1969@163.com

收稿日期: 2024-03-15

  修回日期: 2024-05-10

  网络出版日期: 2024-09-25

基金资助

国家重点研发计划项目(2022YFF0801801);内蒙古自治区自然科学基金项目(2021MS03045)

Effect of different slope characteristics on root nonstructural carbon of Quercus mongolica in the southern Daxing’anling Mountains

  • LIU Yiwei ,
  • WEI Jiangsheng ,
  • HUANG Lidong ,
  • ZHAO Pengwu ,
  • SHU Yang ,
  • LI Huimin ,
  • CAO Lichun ,
  • ZHANG Ting
Expand
  • 1. College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, Inner Mongolia, China
    2. Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010011, Inner Mongolia, China
    3. Saihanwla Forest Ecosystem National Station, Chifeng 024000, Inner Mongolia, China
    4. Forestry College of Inner Mongolia Agricultural University, Hohhot 010011, Inner Mongolia, China

Received date: 2024-03-15

  Revised date: 2024-05-10

  Online published: 2024-09-25

摘要

在半干旱区,掌握树木根部碳储存规律对探究水分胁迫影响地上、地下器官碳分配机制至关重要。本研究以蒙古栎(Quercus mongolica)为研究对象,在2021年(湿润年)、2022年(干旱年)、2023年(正常年)的生长季每月采集不同坡向(阳坡、半阳坡、阴坡)蒙古栎粗根样本,测定非结构性碳(Non-Structural Carbohydrate,NSC)及其组分(可溶性糖、淀粉)含量并分析其动态变化规律。结果表明:(1) 粗根NSC组成以淀粉为主,粗根NSC及其组分含量随5月、6月、7月、8月、9月的顺序递增且差异显著(P<0.05)。(2) NSC含量及淀粉含量随湿润年、正常年、干旱年的顺序递增;不同坡向淀粉含量随阳坡、半阳坡、阴坡的顺序递减,且二者均差异显著(P<0.05)。(3) 通过对粗根NSC及其组分影响的主导因素分析,坡向因素影响大,反应了粗根NSC对潜在蒸散量梯度反应敏感。研究结果有助于理解干旱环境下地下器官对树木生长碳分配的调节机制。

本文引用格式

刘艺伟 , 魏江生 , 黄利东 , 赵鹏武 , 舒洋 , 李慧敏 , 曹立春 , 张婷 . 大兴安岭南段蒙古栎粗根非结构性碳对不同坡向的响应[J]. 干旱区研究, 2024 , 41(9) : 1572 -1582 . DOI: 10.13866/j.azr.2024.09.13

Abstract

The distribution of carbon within plant aboveground and subsurface organs is important for understanding the carbon storage systems in tree roots in semi-arid areas. In this study, coarse root samples of Quercus mongolica. were collected monthly during the growing seasons of 2021 (wet year), 2022 (dry year), and 2023 (normal year). The changes in nonstructural carbon and its components (soluble sugar and starch) were analyzed; the NSC (Non-Structural Carbohydrate) content of coarse root was primarily starch, and it increased significantly with seasonal changes (P<0.05). The NSC and starch contents were highest during the wet season, followed by the normal and dry seasons. The starch content was highest on the sunny slope, followed by the semi-sunny and shady slopes regions (P<0.05). Slope characteristics affect the NSC and component contents of coarse roots, as NSC and component contents change in response to potential evapotranspiration gradients. The findings provide a better understanding of the mechanisms controlling carbon distribution within plant underground organs in response to arid conditions.

参考文献

[1] Li X, Piao S, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4(8): 1075-1083.
[2] Jin Y, Hao G, Hammond W, et al. Aridity-dependent sequence of water potentials for stomatal closure and hydraulic dysfunctions in woody plants[J]. Global Change Biology, 2023, 29(7): 2030-2040.
[3] 王欣, 王凯, 张日升, 等. 科尔沁沙地油松和赤松非结构性碳水化合物的季节变化[J]. 生态学杂志, 2024: 1-10. [2024-06-12]. https://link.cnki.net/urlid/21.1148.Q.20240611.1845.014.
  [Wang Xin, Wang Kai, Zhang Risheng, et al. Seasonal variations in non-structural carbohydrate of Pinus tabuliformis and Pinus densiflora in Horqin Sandy Land[J]. Journal of Ecology, 2024: 1-10. [2024-06-12]. https://link.cnki.net/urlid/21.1148.Q.20240611.1845.014.]
[4] Donald A Y, David T. Tissue relationships between non-structural carbohydrate concentration and flowering in a subtropical herb, Heliconia caribaea(Heliconiaceae)[J]. Caribbean Journal of Science, 2005, 41(2): 243-249.
[5] Sakamaki Y, Ino Y. Response of non-structural carbohydrate content of belowground parts in Equisetum arvense according to the irradiance change during a growing season[J]. Journal of Plant Research, 2004, 117: 385-391.
[6] 王凯, 林婷婷, 吕林有, 等. 水分胁迫对杨树幼苗非结构性碳水化合物分配的影响[J]. 生态学杂志, 2019, 38(11): 3283-3290.
  [Wang Kai, Lin Tingting, Lü Linyou, et al. Effects of water stress on non-structural carbohydrate allocation in poplar seedlings[J]. Chinese Journal of Ecology, 2019, 38(11): 3283-3290.]
[7] 付小斌, 陈琦, 刘苑秋, 等. 降水格局变化对杉木幼苗不同器官非结构性碳水化合物的影响[J]. 浙江农林大学学报, 2024: 1-10. [2024-07-04]. doi: 10.11833/j.issn.2095-0756.20240253.
  [Fu Xiaobin, Chen Qi, Liu Yuanqiu, et al. Effects of precipitation pattern change on non-structural carbohydrates in differed organs of Cunninghamia lanceolata seedlings[J]. Journal of Zhejiang Agriculture and Forestry University, 2024: 1-10. [2024-07-04]. doi: 10.11833/j.issn.2095-0756.20240253.]
[8] Hoch G, Richter A, Korner C. Non-structural carbon compounds in temperate forest trees[J]. Plant, Cell & Environment, 2003, 26(7): 1067-1081.
[9] 郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4): 1188-1196.
  [Zheng Yunpu, Wang Hexin, Lou Xin, et al. Changes of non-structural carbohydrates and its impact factors in trees: A review[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1188-1196.]
[10] 章异平, 师志强, 竹磊, 等. 秦岭东段不同海拔栓皮栎粗跟非结构性碳水化合物含量的季节动态[J]. 生态学杂志, 2021, 40(3): 712-720.
  [Zhang Yiping, Shi Zhiqiang, Zhu Lei, et al. Seasonal variations of non-structural carbohydrate contents in coarse roots of Quercus variabilis Blume at different altitudes in the eastern Qinling Mountain[J]. Chinese Journal of Ecology, 2021, 40(3): 712-720.]
[11] Sala A, Woodruff D R, Meinzer F C. Carbon dynamics in trees: Feast or famine?[J]. Tree Physiology, 2012, 32(6): 764-775.
[12] 孟敏. 干旱胁迫对连翘幼苗器官中碳水化合物分配的影响[D]. 杨凌: 西北农林科技大学, 2019.
  [Meng Min. Effects of Drought Stress on the Allocation of Carbohydrates in Organs of Forsythia suspensa Saplings[D]. Yangling: Northwest A & F University, 2019.]
[13] Hartmann H, Trumbore S. Understanding the roles of non-structural carbohydrates in forest trees—from what we can measure to what we want to know[J]. New Phytologist, 2016, 211(2): 386-403.
[14] Schonbeck L, Li M H, Lehmann M M, et al. Soil nutrient availability alters tree carbon allocation dynamics during drought[J]. Tree Physiology, 2021, 41(5): 697-707.
[15] 杨振亚, 周本智, 陈庆标, 等. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响[J]. 生态学报, 2018, 38(18): 6729-6740.
  [Yang Zhenya, Zhou Benzhi, Chen Qingbiao, et al. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata[J]. Acta Ecologica Sinica, 2018, 38(18): 6729-6740.]
[16] 张婷. 干旱胁迫对刺槐和油松幼苗非结构性碳水化合物的影响[D]. 杨凌: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.
  [Zhang Ting. Effects of Drought Stress on Nonstructural Carbohydrates in Robinia Pseudoacacia and Pinus Tabuliformis Saplings[D]. Yangling: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018.]
[17] 李蟠. 贡嘎山高山林线树种生理特性比较研究[D]. 重庆: 西南大学, 2008.
  [Li Pan. Study of Physiological Characteristics of the Alpine Treeline Trees in Mt. Gongga, Southwest China[D]. Chongqing: Southwest University, 2008.]
[18] 梁宽, 樊燕, 冯火炬, 等. 不同石灰岩生境淡竹非结构性碳水化合物浓度及分配特征[J]. 林业科学, 2019, 55(6): 22-27.
  [Liang Kuan, Fan Yan, Feng Huoju, et al. Concentration and distribution pattern of non-structural carbohydrate of Phyllostachys glauca in different limestone habitats[J]. Scientia Siluricae, 2019, 55(6): 22-27.]
[19] 郑金萍, 杨学东, 郭忠玲, 等. 蒙古栎林天然更新状况及影响因素研究[J]. 北华大学学报(自然科学版), 2015, 16(5): 652-657.
  [Zheng Jinping, Yang Xuedong, Guo Zhongling, et al. Characteristics and influencing factors of natural regeneration of Quercus mongolica forest[J]. Journal of Beihua University (Natural Science Edition), 2015, 16(5): 652-657.]
[20] 于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
  [Yu Guirui, Wang Shaoqiang, Chen Panqin, et al. Application of carbon isotope technology in soil carbon cycle research[J]. Advances in Earth Science, 2005, 20(5): 568-577.]
[21] Barbaroux C, Bréda N, Dufrêne E. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica)[J]. New Phytologist, 2003, 157(3): 605-615.
[22] 张华, 魏江生, 李航, 等. 大兴安岭南段不同坡向蒙古栎次生林土壤化学计量特征[J]. 温带林业研究, 2022, 5(2): 8-12, 18.
  [Zhang Hua, Wei Jiangsheng, Li Hang, et al. Soil stoichiometry characteristics of Quercus mongolica secondary forests in different slopes in southern Great Xing’an Mountains[J]. Temperate Forestry Research, 2022, 5(2): 8-12, 18.]
[23] 靳贝贝, 国庆喜. 蒙古栎、白桦根系分解及养分动态[J]. 生态学报, 2013, 33(8): 2416-2424.
  [Jin Beibei, Guo Qingxi. Root decomposition and nutrient dynamics of Quercus mongolica and Betula platyphylla[J]. Acta Ecologica Sinica, 2013, 33(8): 2416-2424.]
[24] 乌艺恒. 大兴安岭南段白桦蒸腾耗水和水分利用来源对干旱的响应[D]. 呼和浩特: 内蒙古农业大学, 2023.
  [Wu Yiheng. Response of Transpiration Water Consumption and Water Uptake Source of Betula platyphylla to Drought in the Southern Greater khingan Mountains[D]. Hohhot: Inner Mongolia Agricultural University, 2023.]
[25] Buysse J, Merckx R. An improved colorimetric method to quantify sugar content of plant tissue[J]. Journal of Experimental Botany, 1993, 44(10): 1627-1629.
[26] 张华. 大兴安岭南段蒙古栎非结构性碳对干旱梯度的响应[D]. 呼和浩特: 内蒙古农业大学, 2023.
  [Zhang Hua. Response of Nonstructural Carbon of Quercus mongolica to Drought Gradients in the Southern Part of Daxing’anling Mountains[D]. Hohhot: Inner Mongolia Agricultural University, 2023.]
[27] 袁钰晨. 不同树龄的天然更新胡桃楸幼树对生境的生长、形态和生理响应[D]. 哈尔滨: 东北林业大学, 2023.
  [Yuan Yuchen. Growth, Morphology and Physiological Responses of Different-Aged Naturally Regenerated Juglans mandshurica Saplings to Habitat[D]. Harbin: Northeast Forestry University, 2023.]
[28] 上官淮亮, 刘鸿雁, 胡国铮, 等. 干旱林线区不同树种非结构性碳水化合物的季节格局及其主导因子[J]. 北京大学学报(自然科学版), 2019, 55(3): 553-560.
  [Shangguan Huailiang, Liu Hongyan, Hu Guozheng, et al. Seasonal pattern of non-structural carbohydrates of different tree species in arid forest line area and its dominant factors[J]. Journal of Peking University (Natural Science Edition), 2019, 55(3): 553-560.]
[29] Galvez D A, Landhusser S, Tyree M. Root carbon reserve dynamics in aspen seedlings: Does simulated drought induce reserve limitation?[J]. Tree Physiology, 2011, 31(3): 250-257.
[30] William R, Leander D. Hydraulic and carbohydrate changes in experimental droughtinduced mortality of saplings in two conifer specie[J]. Tree Physiology, 2013, 33(3): 252-260.
[31] 朱云云, 王孝安, 王贤, 等. 坡向因子对黄土高原草地群落功能多样性的影响[J]. 生态学报, 2016, 36(21): 6823-6833.
  [Zhu Yunyun, Wang Xiao’an, Wang Xian, et al. Effect of slope aspect on the functional diversity of grass communities in the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(21): 6823-6833.]
[32] 李志琪, 吴俊文, 陈刚, 等. 中幼龄林华山松非结构性碳水化合物季节变化[J]. 西北植物学报, 2024, 44(4): 782-791.
  [Li Zhiqi, Wu Junwen, Chen Gang, et al. Seasonal variations of non-structural carbohydrates of young and middle-age Pinus armandii plantations[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 782-791.]
[33] 赵鹏武, 管立娟, 刘兵兵, 等. 我国半干旱区东段森林动态研究现状及展望[J]. 世界林业研究, 2021, 34(2): 74-79.
  [Zhao Pengwu, Guan Lijuan, Liu Bingbing, et al. Research status and prospects of forest dynamics in the eastern semi-arid region of China[J]. World Forestry Research, 2021, 34(2): 74-79.]
[34] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12): 1245-1255.
  [Yu Limin, Wang Chuankuan, Wang Xingchang. Distribution of non-structural carbohydrates in three temperate tree species[J]. Chinese Journal of Phytoecology, 2011, 35(12): 1245-1255.]
[35] 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34(21): 6090-6100.
  [Du Yao, Han Yi, Wang Chuankuan. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii[J]. Acta Ecologica Sinica, 2014, 34(21): 6090-6100.]
[36] 赵西平, 郭平平, 张昭林, 等. 枫桦树枝和根系木质部非结构性碳水化合物的地区差异[J]. 西北林学院学报, 2019, 34(1):224-228.
  [Zhao Xiping, Guo Pingping, Zhang Zhaolin, et al. Regional variations of non-structural carbohydrates in xylem of Betula costata branches and roots[J]. Journal of Northwest Forestry College, 2019, 34(1): 224-228.]
[37] Li Maihe, Xiao Wenfa, Wang Sanfen, et al. Mobile carbohydrates in Himalayan treeline trees. I. Evidence for carbon gain limitation but not for growth limitation[J]. Tree Physiology, 2008, 28(8): 1287-1296.
[38] 王彪, 江源, 王明昌, 等. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015, 39(7): 746-752.
  [Wang Biao, Jiang Yuan, Wang Mingchang. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 746-752.]
[39] Weltzin J F, Loik M E, Schwinning S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation[J]. Bioscience, 2003, 53(10): 941-952.
[40] 刘雪蕊. 内陆河湿地芦苇非结构性碳水化合物的季节动态研究[D]. 兰州: 西北师范大学, 2020.
  [Liu Xuerui. Study on the Seasonal Dynamics of Non-structured Carbohydrates for Phragmites australis in Inland River Wetlands[D]. Lanzhou: Northwest Normal University, 2020.]
[41] 谷艳芳, 丁圣彦, 高志英. 干旱胁迫下冬小麦光合产物分配格局及其与产量的关系[J]. 生态学报, 2010, 30(5) : 1167-1173.
  [Gu Yanfang, Ding Shengyan, Gao Zhiying. Distribution pattern of photosynthetic products in winter wheat under drought stress and its relationship with yield[J]. Acta Ecologica Sinica, 2010, 30(5): 1167-1173.]
文章导航

/