呼伦贝尔东部农田区动态融雪过程及其影响因子
收稿日期: 2024-02-02
修回日期: 2024-08-07
网络出版日期: 2024-09-25
基金资助
水利部重大研究计划(SKS-2022034);内蒙古自治区科技计划项目(2021GG0019);三峡金沙江川云水电科研项目(4323020011);西藏自治区科技计划项目(XZ202102YD0012C);青海省科技计划项目(2023-ZJ-733)
Dynamic snowmelt process and its influencing factors in the eastern farmland region of Hulun Buir
Received date: 2024-02-02
Revised date: 2024-08-07
Online published: 2024-09-25
春季融雪过程不仅是陆面过程与冰雪水文研究领域的关键一环,更直接指示了气候、物候及其变化特征。受气候条件以及观测数据的限制,呼伦贝尔中高纬农田地区积雪消融过程及其变化规律长期被忽略。本文以呼伦贝尔东部农田区域两个野外雪深自动观测站2021—2022年小时级雪深数据以及同步气温、地表温度等气象观测数据为依据,分析了呼伦贝尔农区积雪消融过程及其敏感影响因子。结果表明:(1) 在呼伦贝尔高纬农区积雪持续期一般始于10月中旬并终于次年3月上旬,其中,2022年的积雪期长达116 d。秋冬季节积雪较浅,雪深一般处于5~9 cm,春季雪深大多超过10 cm以上。积雪融化期始于3月上旬,完全融化需5~18 d。(2) 年融雪过程表现为先逐渐减少后迅速融化的前稳后急特征。日融雪过程则开始于每日9:00—10:00,最大融雪速率通常出现于11:00—16:00。(3) 气温和雪面温度对积雪融化影响显著,但融雪与土壤温度相关最为显著,9:00—17:00地
黄坤琳 , 吴国周 , 徐维新 , 李利东 , 王海梅 , 李航 , 李自翔 , 司荆柯 , 刘洪宾 , 吴成娜 . 呼伦贝尔东部农田区动态融雪过程及其影响因子[J]. 干旱区研究, 2024 , 41(9) : 1514 -1526 . DOI: 10.13866/j.azr.2024.09.08
The spring snowmelt process is not only a key part of land surface processes and snow hydrology studies but also directly indicates climate, phenology, and their changing characteristics. Due to climatic conditions and limitations in observational data, the snowmelt process and its altering patterns in the snow-covered farmlands of the northern mid-high latitude regions have been long neglected. This paper, based on hourly snow depth data from two automatic snow depth observation stations in the eastern farmland area of Hulunbuir during 2021-2022 and synchronous meteorological observation data such as air and ground temperatures, analyzes the snowmelt process on the underlying surface of the northern agricultural area and the factors influencing it. The results show that: (1) In these areas, the snow cover period generally started in mid-October and ended in early March of the following year, with the snow cover period in 2022 lasting 116 days. The snow depth in autumn and winter was relatively shallow, generally 5-9 cm, and in spring, often exceeded 10 cm. The snowmelt period began in early March, and complete melting took 5-18 days. (2) The annual snowmelt process was characterized by a gradual decrease followed by a rapid melt. The daily snowmelt process started between 9:00 and 10:00 AM, with the maximum melting rate usually occurring between 11:00 AM and 16:00 PM. (3) Air and snow surface temperatures markedly influenced snowmelt, but the correlation between snowmelt and soil temperature was the most significant, with the 0 cm ground surface temperature between 9:00 AM and 17:00 PM being the dominant factor influencing the rate of melting. (4) A comparison of the different types of snowmelt processes suggested that the dynamic snowmelt characteristics in these areas were consistent with those under various cover conditions such as grass and forestlands, indicating that the snowmelt process was mainly influenced by differences in thermal conditions, with little variability in the snowmelt process under various land cover and use types.
Key words: snow; snowmelt characteristics; influencing factors; farmland; Hulun Buir
[1] | 崔曼仪, 周刚, 张大弘, 等. 1900—2020年全球融雪洪水灾害及其影响[J]. 冰川冻土, 2022, 44(6): 1898-1911. |
[Cui Manyi, Zhou Gang, Zhang Dahong, et al. Global snowmelt flood disasters and their impact from 1900 to 2020[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1898-1911.] | |
[2] | 赵强, 吴从林, 罗平安, 等. 冻融期东北农田土壤温度和水分变化规律及影响因素分析[J]. 冰川冻土, 2020, 42(3): 986-995. |
[Zhao Qiang, Wu Conglin, Luo Ping’an, et al. Variation and influencing factors of soil temperature and moisture during freezing and thawing period in a seasonal freezing agricultural area in Northeast China[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 986-995.] | |
[3] | Biemans H, Siderius C, Lutz A F, et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain[J]. Nature Sustainability, 2019, 2(7): 594-601. |
[4] | Rott H, Yueh S H, Cline D W, et al. Cold regions hydrology high-resolution observatory for snow and cold land processes[J]. Proceedings of the IEEE, 2010, 98(5): 752-765. |
[5] | Callaghan T V, Johansson M, Brown R D, et al. Multiple effects of changes in Arctic snow cover[J]. Ambio, 2011, 40(3): 32-45. |
[6] | 车涛, 李新. 1993—2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1): 64-67. |
[Che Tao, Li Xin. Spatial distribution and temporal variation of snow water resources in China during 1993-2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 64-67.] | |
[7] | Harder P, Pomeroy J W, Helgason W D. Implications of stubble management on snow hydrology and meltwater partitioning[J]. Canadian Water Resources Journal, 2019, 44(2): 193-204. |
[8] | Junghans N, Cullmann J, Huss M. Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine[J]. Hydrological Sciences Journal, 2011, 56(6): 981-993. |
[9] | Green D, Rezanezhad F, Jordan S, et al. Effects of winter pulsed warming and snowmelt on soil nitrogen cycling in agricultural soils: A lysimeter study[J]. Frontiers in Environmental Science, 2022, 10: 1020099. |
[10] | 陈秀雪, 李晓峰, 卫颜霖, 等. 2017—2020年东北典型农田区积雪水热效应数据集[J]. 中国科学数据(中英文网络版), 2022, 7(3): 106-119. |
[Chen Xiuxue, Li Xiaofeng, Wei Yanlin, et al. A dataset of hydrothermal effect of snow cover in typical farmland of Northeast China from 2017 to 2020[J]. China Scientific Data, 2022, 7(3): 106-119.] | |
[11] | 周扬, 徐维新, 白爱娟, 等. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2017, 36(1): 24-32. |
[Zhou Yang, Xu Weixin, Bai Aijuan, et al. Dynamic snow-melting process and its relationship with air temperature in Tuotuohe, Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2017, 36(1): 24-32.] | |
[12] | Young K L. Assessment of snow storage and ground ice melt in High Arctic environments[J]. Hydrological Processes, 2006, 20(12): 2643-2645. |
[13] | Reynolds R L, Goldstein H L, Moskowitz B M, et al. Dust deposited on snow cover in the San Juan Mountains, Colorado, 2011-2016: Compositional variability bearing on snow-melt effects[J]. Journal of Geophysical Research-Atmospheres, 2020, 125(7): e2019JD-032210. |
[14] | 袁喆, 张妍, 刘彪. 天气预报准确性对农作物种植的影响[J]. 种子科技, 2023, 41(6): 136-138. |
[Yuan Zhe, Zhang Yan, Liu Biao. The impact of weather forecast accuracy on crop cultivation[J]. Seed Science & Technology, 2023, 41(6): 136-138.] | |
[15] | 许少辉. 2003—2018年喀喇昆仑-西昆仑地区积雪时空变化及影响因素分析[D]. 西安: 西北大学, 2021. |
[Xu Shaohui. Spatial-temporal Variations of Snow Cover and Influencing Factors in the Karakoram-West Kunlun Area from 2003 to 2018[D]. Xi’an: Northwest University, 2021.] | |
[16] | 陈涛, 高歌, 陈德亮, 等. 青藏高原多源雪深数据适用性综合评估[J]. 冰川冻土, 2022, 44(3): 795-809. |
[Chen Tao, Gao Ge, Chen Deliang, et al. Comprehensive applicability evaluation of multi-source snow depth datasets over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 795-809.] | |
[17] | 周扬, 徐维新, 张娟, 等. 2013—2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J]. 自然资源学报, 2017, 32(1): 101-113. |
[Zhou Yang, Xu Weixin, Zhang Juan, et al. A comparative analysis of the two dynamic snow-melting process and their relationship with air temperature during 2013-2015 in the area of Maduo, Tibetan Plateau[J]. Journal of Natural Resources, 2017, 32(1): 101-113.] | |
[18] | 张娟, 徐维新, 王力, 等. 三江源腹地玉树地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2018, 37(4): 936-945. |
[Zhang Juan, Xu Weixin, Wang Li, et al. Dynamic snow melting process and its relationship with air temperature in the hinterland of Sanjiangyuan region in Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(4): 936-945.] | |
[19] | 马荣, 张明军, 王圣杰, 等. 近50 a西北干旱区冬季积雪日数变化特征[J]. 自然资源学报, 2018, 33(1): 127-138. |
[Ma Rong, Zhang Mingjun, Wang Shengjie, et al. Variation characteristics of snow cover days in winter in arid region of Northwest China in last 50 years[J]. Journal of Natural Resources, 2018, 33(1): 127-138.] | |
[20] | 王斌, 郭帅帅, 冯杰, 等. 基于SWAT的积雪消融对高寒区农田土壤水分影响模拟[J]. 农业机械学报, 2022, 53(1): 271-278. |
[Wang Bin, Guo Shuaishuai, Feng Jie, et al. Simulation on effect of snowmelt on cropland soil moisture within basin in high latitude cold region using SWAT[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 271-278.] | |
[21] | 刘祥辉. 季节性冻融区不同垄向农田融雪过程及融雪径流化学特征研究[D]. 沈阳: 沈阳农业大学, 2019. |
[Liu Xianghui. Study on Snow Melting Process and Chemical Characteristics of Snow Melting Runoff in Different Ridge Directions in Seasonal Freeze-thaw Zone[D]. Shenyang: Shenyang Agricultural University, 2019.] | |
[22] | 王光远, 邓正栋, 路钊, 等. 基于GF-6 PMS影像的积雪信息识别[J]. 红外技术, 2021, 43(6): 543-556. |
[Wang Guangyuan, Deng Zhengdong, Lu Zhao, et al. Snow information recognition based on GF-6 PMS images[J]. Infrared Technology, 2021, 43(6): 543-556.] | |
[23] | 朱淑珍, 黄法融, 冯挺, 等. 1979—2020年天山地区积雪量估算及其特征分析[J]. 冰川冻土, 2022, 44(3): 984-997. |
[Zhu Shuzhen, Huang Farong, Feng Ting, et al. Estimation of snow mass and its distribution characteristics from 1979 to 2020 in Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 984-997.] | |
[24] | 张梦肖, 王豫, 买买提艾力·买买提依明, 等. 古尔班通古特沙漠及周边区域冬季大气边界层高度对地表积雪的响应[J]. 冰川冻土, 2022, 44(5): 1558-1569. |
[Zhang Mengxiao, Wang Yu, Aili Mamtimin, et al. Response of atmospheric boundary layer height to snow cover in winter in Gurbantunggut Desert and its surrounding areas[J]. Journal of Glaciology and Geocryology, 2022, 44(5): 1558-1569.] | |
[25] | 李晶, 刘时银, 张世强, 等. 中国西北山区融雪径流模拟研究回顾与展望[J]. 冰川冻土, 2022, 44(3): 1029-1040. |
[Li Jing, Liu Shiyin, Zhang Shiqiang, et al. Review on snowmelt runoff simulation in mountain regions, Northwest China[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 1029-1040.] | |
[26] | 桑婧, 王迎宾, 钱连红, 等. 草甸草原动态融雪过程与气象要素关系分析——以额尔古纳市为例[J]. 干旱区研究, 2022, 39(5): 1428-1436. |
[Sang Jing, Wang Yingbin, Qian Lianhong, et al. Analysis of the relationship between the dynamic snowmelt process of meadow grassland and meteorological factors: Ergun City[J]. Arid Zone Research, 2022, 39(5): 1428-1436.] | |
[27] | 魏凤英. 全国夏季降水区域动态权重集成预报试验[J]. 应用气象学报, 1999, 10(4): 402-409. |
[Wei Fengying. Regional consensus forecast method with dynamic weighting for summer precipitation over China[J]. Journal of Applied Meteorological Science, 1999, 10(4): 402-409.] | |
[28] | 黄坤琳, 徐维新, 王海梅, 等. 内蒙古呼伦贝尔林区动态融雪过程及其影响因子[J]. 冰川冻土, 2023, 46(3): 832-849. |
[Huang Kunlin, Xu Weixin, Wang Haimei, et al. Dynamic snowmelt process and its influencing factors in Hulunbuir forest region, Inner Mongolia[J]. Journal of Glaciology and Geocryology, 2023, 46(3): 832-849.] | |
[29] | 赵红玲. 基于改进SWAT的东北寒区融雪径流模拟及预测[D]. 长春: 吉林大学, 2023. |
[Zhao Hongling. Snowmelt Runoff Simulation and Forecast Using Improved SWAT in Cold Regions of Northeast China[D]. Changchun: Jilin University, 2023.] |
/
〈 | 〉 |