天气与气候

基于GCM的蒙古高原降水稳定同位素模拟

  • 陆文静 ,
  • 瞿德业 ,
  • 杨明月 ,
  • 黄翰林 ,
  • 杨山泉
展开
  • 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.甘肃省绿洲资源环境与可持续发展重点实验室,甘肃 兰州 730070
陆文静(2000-),女,硕士研究生,主要从事水文同位素研究. E-mail: lwj002277@163.com
瞿德业. E-mail: qudeye@nwnu.edu.cn

收稿日期: 2024-03-13

  修回日期: 2024-04-30

  网络出版日期: 2024-09-25

基金资助

西北师范大学青年教师科研能力提升计划项目(NWNW-LKQN2020-05XX)

GCM-based stable isotope modelling of precipitation in the Mongolian Plateau

  • LU Wenjing ,
  • QU Deye ,
  • YANG Mingyue ,
  • HUANG Hanlin ,
  • YANG Shanquan
Expand
  • 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2024-03-13

  Revised date: 2024-04-30

  Online published: 2024-09-25

摘要

利用第二次稳定水同位素比较小组SWING2中的5种大气环流模式(GCM)对比分析蒙古高原降水同位素大气水线方程、时空变化特征及与温度的关系,并与全球降水同位素观测信息网(GNIP)实测数据进行比较,旨在根据比较结果得出最佳适用于蒙古高原的GCM模型,为缺少实测站点的蒙古高原地区提供详细的降水同位素信息。结果表明:由LMDZ(ECMWF)模拟的当地大气水线方程δD=7.783δ18O+3.011更接近于实测结果;5种GCM模式模拟的δ18O与δD都具有显著的季节性变化,其中模拟月均δ18O和δD值效果最好的为LMDZ(free)和LMDZ(ECMWF);根据纬度效应分析发现,只有CAM2(free)、LMDZ(ECMWF)和MIROC(free)模型能够显示出蒙古高原的纬度效应;从经度上看,LMDZ(ECMWF)和isoGSM(NCEP)模型显示出西段地区(87°~107°E)降水中的δ18O值比东段地区(107°~127°E)降水中的δ18O值大;在温度效应分析中,除了LMDZ(free)呈现出较弱的温度效应,其余模式均呈现出明显的温度效应,并且LMDZ(ECMWF)模式模拟两地降水中的δ18O与温度的相关系数最高,温度效应最强。

关键词: GCM; 降水; 同位素; 蒙古高原

本文引用格式

陆文静 , 瞿德业 , 杨明月 , 黄翰林 , 杨山泉 . 基于GCM的蒙古高原降水稳定同位素模拟[J]. 干旱区研究, 2024 , 41(9) : 1491 -1502 . DOI: 10.13866/j.azr.2024.09.06

Abstract

This study used five atmospheric circulation models (GCM) from SWING2 and the second stable water isotope comparison group, to analyze the atmospheric water line equations of precipitation isotopes, spatial and temporal variations, and temperature relationships in the Mongolian Plateau. They were compared with the data from the Global Network for Isotope Observation and Information on Precipitation (GNIP), to provide detailed precipitation isotope information for the Mongolian Plateau, which lacks measurement stations. The results show that the local atmospheric water equation δD=7.783δ18O+3.011 simulated by LMDZ (ECMWF) was closer to the measured values; the δ18O and δD simulated by the five GCM models had significant seasonal variations, and the best simulation of their average monthly values were LMDZ (free) and LMDZ (ECMWF); and the results are based on the latitudinal effect. Only the CAM2 (free), LMDZ (ECMWF) and MIROC (free) models demonstrated the latitudinal effect in the Mongolian Plateau. In terms of longitude, the LMDZ (ECMWF) and isoGSM (NCEP) models showed that the δ18O values during precipitation in the western section of the region (87°-107°E) were higher than those in the eastern section (107°-127°E). Except for LMDZ (free), which demonstrated a weak temperature effect, others showed a robust impact. The LMDZ (ECMWF) model simulated the highest correlation coefficient between δ18O and temperature during precipitation in the two areas, with the strongest temperature effect.

参考文献

[1] 周思捷, 孙从建, 陈伟, 等. 黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J]. 地理学报, 2022, 77(7): 1745-1761.
  [Zhou Sijie, Sun Congjie, Chen Wei, et al. Precipitation isotope characteristics and water vapor sourcesin summer in eastern Loess Plateau[J]. Journal of Geographical Sciences, 2022, 77(7): 1745-1761.]
[2] 折远洋, 王圣杰, 王鹏, 等. 西秦岭地区大气降水氢氧稳定同位素特征[J]. 地球与环境, 2023, 51(2): 143-152.
  [She Yuanyang, Wang Shengjie, Wang Peng, et al. Stable hydrogen and oxygen isotopes in precipitation in the western Qinling Mountains[J]. Earth and Environment, 2023, 51(2): 143-152.]
[3] 贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66.
  [He Qiang, Sun Congjian, Wu Lina, et al. Study on isotopic characteristics of atmospheric precipitation in Loess Plateau based on GNIP[J]. Journal of China Hydrology, 2018, 38(1): 58-66.]
[4] 赵伟, 郝成元. 中国大陆夏季水汽稳定同位素空间特征[J]. 气象与环境科学, 2019, 42(1): 54-59.
  [Zhao Wei, Hao Chengyuan. Spatial characteristics of stable isotope in summer precipitation in China mainland[J]. Meteorological and Environmental Sciences, 2019, 42(1): 54-59.]
[5] Antunes P, Boutt D F, Rodrigues F C. Orographic distillation and spatio-temporal variations of stable isotopes in precipitation in the North Atlantic[J]. Hydrological Processes, 2019, 33(5): 775-793.
[6] Araguás L A, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D22): 28721-28742.
[7] Hatvani I G, Erdélyi D, Vre?a P, et al. Analysis of the spatial distribution of stable oxygen and hydrogen isotopes in precipitation across the Iberian Peninsula[J]. Water, 2020, 12(2): 481.
[8] Prasad G, Chinnasamy P, Cartwright I. Role of stable isotopes in revealing moisture sources and rainfall variability in India[J]. Dynamics of Atmospheres and Oceans, 2024, 106(48): 101444.
[9] 郭鑫, 李文宝, 杜蕾, 等. 内蒙古夏季大气降水同位素特征及影响因素[J]. 中国环境科学, 2022, 42(3): 1088-1096.
  [Guo Xin, Li Wenbao, Du Lei, et al. Characteristics and influence factors for the hydrogen and oxygen isotopic of precipitation in Inner Mongolia[J]. China Environmental Science, 2022, 42(3): 1088-1096.]
[10] 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素[J]. 第四纪研究, 2017, 37(5): 1119-1130.
  [Wang Shengjie, Zhang Mingjun. Spatio-temporal characteristics and influencing factors of stable isotopes in precipitation across the Chinese Tianshan Mountains[J]. Quaternary Sciences, 2017, 37(5): 1119-1130.]
[11] Liu J, Song X, Yuan G, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
[12] 陈举藩, 陈粉丽, 武茜茜, 等. 基于LMDZ模型的蒙古高原降水氢氧稳定同位素特征及水汽来源分析[J]. 地理科学, 2022, 42(9): 1654-1664.
  [Chen Jufan, Chen Fenli, Wu Xixi, et al. Hydrogen and oxygen stable isotope characteristics and water vapor sources of precipitation over Mongolian Plateau based on LMDZ model[J]. Scientia Geographica Sinica, 2022, 42(9): 1654-1664.]
[13] 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
  [Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869.
[14] Zhang M, Wang S. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
[15] Resmi T R, Sudharma K V, Hameed A S. Stable isotope characteristics of precipitation of Pamba River basin, Kerala, India[J]. Journal of Earth System Science, 2016, 125(7): 1481-1493.
[16] 章新平, 孙治安, 张新主, 等. 东亚降水中δ18O的GCM模拟及其与GNIP实测值的比较[J]. 第四纪研究, 2012, 32(1): 67-80.
  [Zhang Xinping, Sun Zhi’an, Zhang Xinzhu, et al. Intercomparison of δ18O in precipitation simulated by isotopic GCMS With GNIP observations over East Asia[J]. Quaternary Sciences, 2012, 32(1): 67-80.]
[17] 王学界, 章新平, 张婉君, 等. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
  [Wang Xuejie, Zhang Xinping, Zhang Wanjun, et al. Comparison on spatial distribution of hydrogen and oxygen stable isotope GCM simulation in global precipitation[J]. Advances in Earth Science, 2017, 32(9): 983-995.]
[18] 廖亚一, 谢冰波, 赵盼盼. 基于打分法评估GCM模式模拟降水的性能[J]. 水利规划与设计, 2023(5): 24-33, 101.
  [Liao Yayi, Xie Bingbo, Zhao Panpan. Evaluation of the performance of the GCM model for simulating precipitation based on a scoring approach[J]. Water Planning and Design, 2023(5): 24-33, 101.]
[19] 李昕潼, 李占玲, 韩孺村. 不同偏差校正法对GCM降水数据的应用效果分析[J]. 水文, 2023, 43(3): 93-100, 117.
  [Li Xintong, Li Zhanling, Han Rucun. Evaluations of different bias correction methods on the GCM precipitation data[J]. Journal of China Hydrology, 2023, 43(3): 93-100, 117.]
[20] 李宁, 白蕤, 李玮, 等. 基于格网的GCM数据修订分析未来海南岛农业水热资源的变化特征[J]. 中国农业气象, 2021, 42(6): 447-462.
  [Li Ning, Bai Rui, Li Wei, et al. Analysis of the change of agricultural heat and precipitation resources based on grid revision of GCM outputs in Hainan island[J]. Chinese Journal of Agrometeorology, 2021, 42(6): 447-462.]
[21] 章新平, 孙治安, 关华德, 等. 东亚水循环中水稳定同位素的GCM模拟和相互比较[J]. 冰川冻土, 2011, 33(6): 1274-1285.
  [Zhang Xinping, Sun Zhi’an, Guan Huade, et al. GCM simulation of stable water isotopes in water cycle and intercomparisons over East Asia[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1274-1285.]
[22] 潘素敏, 张明军, 王圣杰, 等. 基于GCM的中国土壤水中δ18O的分布特征[J]. 生态学杂志, 2017, 36(6): 1727-1738.
  [Pan Sumin, Zhang Mingjun, Wang Shengjie, et al. Distribution characteristics of δ18O in soil water in China based on GCMs[J]. Chinese Journal of Ecology, 2017, 36(6): 1727-1738.]
[23] 石梦雨, 王圣杰, 姚俊强, 等. 基于GCM的乌鲁木齐水汽稳定同位素变化特征及其与ENSO的关系[J]. 干旱气象, 2018, 36(6): 895-904.
  [Shi Mengyu, Wang Shengjie, Yao Junqiang, et al. Variation of stable isotope in water vapor over Urumqi and its relationship with ENSO based on isotope enabled-GCMs[J]. Journal of Arid Meteorology, 2018, 36(6): 895-904.]
[24] 杨森, 张明军, 王圣杰. 基于GCM和冰芯的天山地区降水同位素的水汽来源影响机制[J]. 干旱区研究, 2018, 35(2): 425-435.
  [Yang Sen, Zhang Mingjun, Wang Shengjie. Affecting mechanism of moisture sources of isotopes in precipitation in the Tianshan Mountains Based on GCMs and ice core[J]. Arid Zone Research, 2018, 35(2): 425-435.]
[25] Shi X Y, Risi C, Li L, et al. What controls the skill of general circulation models to simulate the seasonal cycle in water isotopic composition in the Tibetan Plateau region?[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(22): e2022JD037048.
[26] 孙慧, 萨楚拉, 孟凡浩, 等. 2000—2020年蒙古高原积雪覆盖率时空变化及其影响因素分析[J]. 赤峰学院学报(自然科学版), 2022, 38(11): 1-6.
  [Sun Hui, Sa Chula, Meng Fanhao, et al. Spatial and temporal variations of snow cover on the Mongolian Plateau and its influencing factors, 2000-2020[J]. Journal of Chifeng University (Natural Science Edition), 2022, 38(11): 1-6.]
[27] 张港栋, 包刚, 元志辉, 等. 2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响[J]. 干旱区地理, 2023, 46(5): 700-710.
  [Zhang Gangdong, Bao Gang, Yuan Zhihui, et al. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020[J]. Arid Land Geography, 2023, 46(5): 700-710.]
[28] 张艳珍, 王钊齐, 杨悦, 等. 蒙古高原草地退化程度时空分布定量研究[J]. 草业科学, 2018, 35(2): 233-243.
  [Zhang Yanzhen, Wang Zhaoqi, Yang Yue, et al. Research on the quantitative evaluation of grassland degradation and spatial and temporal distribution on the Mongolia Plateau[J]. Pratacultural Science, 2018, 35(2): 233-243.]
[29] Xin Y, Yang Y, Chen X, et al. One-kilometre monthly air temperature and precipitation product over the Mongolian Plateau for 1950-2020[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2023, 43(8): 3877-3891.
[30] 韦昊延, 陆彦玮, 李敏, 等. 中国西北内陆季风区基于不同时间尺度和回归方法的大气水线比较[J]. 应用生态学报, 2023, 34(3): 657-663.
  [Wei Haoyan, Lu Yanwei, Li Min, et al. Comparison of meteoric water lines at different temporal scales and regression methods in inland monsoon region, Northwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(3): 657-663.]
[31] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
[32] Zhu G F, Li J F, Shi P J, et al. Relationship between sub-cloud secondary evaporation and stable isotope in precipitation in different regions of China[J]. Environmental Earth Sciences, 2016, 75(10): 876.
[33] 李文宝, 李畅游, 贾德彬, 等. 内蒙古中部夏季大气降水中同位素变化[J]. 干旱区研究, 2017, 34(6): 1214-1221.
  [Li Wenbao, Li Changyou, Jia Debin, et al. Change of stable isotopes in summer precipitation in central Inner Mongolia[J]. Arid Zone Research, 2017, 34(6): 1214-1221.]
[34] Cappa C D, Hendricks M B, Depaolo D J, et al. Isotopic fractionation of water during evaporation[J]. Journal of Geophysical Research Atmospheres, 2003, 108(16): 4525.
[35] Sangchul L, Carlington W, Ali S, et al. Impacts of global circulation model (GCM) bias and WXGEN on modeling hydrologic variables[J]. Water, 2018, 10(6): 764.
[36] Che Y, Zhang M, Wang S, et al. Stable water isotopes of precipitation in China simulated by SWING2 models[J]. Arabian Journal of Geosciences, 2016, 9(19): 732.
[37] Wang S J, Zhang M J, Chen F L, et al. Comparison of GCM-simulated isotopic compositions of precipitation in arid central Asia[J]. Journal of Geographical Sciences, 2015, 25(7): 13.
[38] Salamalikis V, Argiriou A A, Dotsika E. Periodicity analysis of delta O-18 in precipitation over Central Europe: Time-frequency considerations of the isotopic ‘temperature’ effect[J]. Journal of Hydrology, 2016, 534(54): 150-163.
[39] Risi C, Noone D, Worden J, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D5): 1-26.
[40] Fiorella R P, West J B, Bowen G J. Biased estimates of the isotope ratios of steady-state evaporation from the assumption of equilibrium between vapour and precipitation[J]. Hydrological Processes, 2019, 33(19): 2576-2590.
[41] Risi C, Noone D, Worden J, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D5): 1-25.
[42] 周鑫, 陈粉丽, 刘雪媛, 等. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, 40(4): 1179-1186.
  [Zhou Xin, Chen Fenli, Liu Xueyuan, et al. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, 40(4): 1179-1186.]
[43] Peng P Y, Zhang X C J, Chen J. Bias correcting isotope-equipped GCMs outputs to build precipitation oxygen isoscape for eastern China[J]. Journal of Hydrology, 2020, 589(58): 125153.
[44] Xiao Y, Yang G, Yoshimura K, et al. Altitude correction of GCM-Simulated precipitation isotopes in a valley topography of the Chinese Loess Plateau[J]. Sustainability, 2023, 15(17): 13126.
文章导航

/