天气与气候

中国地表日平均风与日极大风气候特征的对比

  • 南宇琨 ,
  • 刘鹏 ,
  • 王伟 ,
  • 陈遗志
展开
  • 1.南京信息工程大学,气象灾害教育部重点实验室,气候与环境变化联合国际研究实验室,气象灾害预测与评估协同创新中心,江苏 南京 210044
    2.国电南瑞科技股份有限公司,江苏 南京 211106
    3.南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211106
    4.智能电网保护和运行控制国家重点实验室,江苏 南京 211106
南宇琨(1998-),女,硕士研究生,主要从事气候变化研究. E-mail: nyk432110@163.com
刘鹏. E-mail: liupeng1998@nuist.edu.cn

收稿日期: 2023-07-13

  修回日期: 2023-10-08

  网络出版日期: 2024-09-25

基金资助

国家电网公司总部科技项目(5108-202218280A-2-68-XG)

Comparative study on climate characteristics of daily mean wind and daily extreme wind throughout China

  • NAN Yukun ,
  • LIU Peng ,
  • WANG Wei ,
  • CHEN Yizhi
Expand
  • 1. Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environmental Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. NARI Technology Co., Ltd., Nanjing 211106, Jiangsu, China
    3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, Jiangsu, China
    4. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, Jiangsu, China

Received date: 2023-07-13

  Revised date: 2023-10-08

  Online published: 2024-09-25

摘要

据多项研究指出,中国地表平均风速在全球变暖的背景下呈现长期下降的趋势。而极大风速与平均风速特征变化是否一致,值得我们关注。通过对比分析国家基本气象站1951—2018年的地表日平均风速和日极大风速数据,结果表明:全国范围内,日平均风速主要集中在2 m·s-1左右,而日极大风速主要集中在8 m·s-1左右,这两种风速在青藏高原地区和内蒙古地区较大。此外,日平均风速出现小风速概率更高,而日极大风速的概率分布更接近于正态分布。从1960—2010年,日平均风速下降了19%,而日极大风速下降更为显著,达到20%。然而,在2010年之后,随着全球变暖的加剧,二者均略有回升,尤其是日平均风速的回升更为显著。这一结论强调了在全球变暖背景下持续关注和研究风速变化的重要性,有助于深入了解中国地表风速的变化特征,同时也为风速预报、风能开发等项目提供科学参考。

本文引用格式

南宇琨 , 刘鹏 , 王伟 , 陈遗志 . 中国地表日平均风与日极大风气候特征的对比[J]. 干旱区研究, 2024 , 41(9) : 1468 -1479 . DOI: 10.13866/j.azr.2024.09.04

Abstract

Studies have identified a long-term decline in the mean surface wind speed in China under the background of global warming. However, whether the extreme wind speed is consistent with the mean wind speed is worthy of investigation. Through the comparative analysis of the daily mean wind speed data and daily extreme wind speed data from the national basic weather stations for the years 1951 to 2018, the following conclusions are drawn: Nationwide, the daily mean wind speed is mainly concentrated at approximately 2 m·s-1 and the daily extreme wind speed is mainly concentrated at approximately 8 m·s-1; both wind speeds are larger in the Qinghai-Xizang Plateau and Inner Mongolia. In addition, the daily mean wind speed is more likely to be smaller, whereas the probability distribution of daily extreme wind speed is closer to a normal distribution. From 1960 to 2010, the daily mean wind speed decreased by 19%, while the daily extreme wind speed decreased even more significantly, up to 20%. However, after 2010, with the intensification of global warming, both speeds slightly rebounded; in particular, the daily mean wind speed has increased more significantly. These findings emphasize the importance of continuous attention and research into wind speed changes in the context of global warming, which are extremely helpful in comprehending the characteristics of surface wind speed changes in China, as well as providing a scientific reference for wind speed forecasting and wind energy development projects.

参考文献

[1] 温敏, 张人禾, 杨振斌. 气候资源的合理开发利用[J]. 地球科学进展, 2004, 19(6): 896-1002.
  [Wen Min, Zhang Renhe, Yang Zhenbin. Rational development and utilization of climate resources[J]. Advances in Earth Science, 2004, 19(6): 896-1002.]
[2] 李耀华, 孔力. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-433.
  [Li Yaohua, Kong Li. Developing solar and wind power generation technology to accelerate China’s energy transformation[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 426-433.]
[3] Liu F, Sun F, Liu W, et al. On wind speed pattern and energy potential in China[J]. Applied Energy, 2019, 236(45): 867-876.
[4] 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展[J]. 应用气象学报, 2020, 31(1): 1-12.
  [Ding Yihui, Li Xiao, Li Qiaoping. Advances of surface wind speed changes over China under global warming[J]. Journal of Applied Meteorological Science, 2020, 31(1): 1-12.]
[5] Shen C, Zha J, Wu J, et al. Centennial-Scale variability of terrestrial near-surface wind speed over China from reanalysis[J]. Journal of Climate, 2021, 34(14): 5829-5846.
[6] Lin C, Yang K, Qin J, et al. Observed coherent trends of sur-face and upper-air wind speed over China since 1960[J]. Journal of Climate, 2013, 26(9): 2891-2903.
[7] Zhang Z, Wang K. Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017[J]. Journal of Climate, 2020, 33(10): 3989-4008.
[8] Zha J, Shen C, Zhao D, et al. Slowdown and reversal of terrestrial near-surface wind speed and its future changes over eastern China[J]. Environmental Research Letters, 2021, 16(3): 03402.
[9] 王遵娅, 丁一汇, 何金海, 等. 近50年来中国气候变化特征的再分析[J]. 气象学报, 2004, 62(2): 228-236.
  [Wang Zunya, Ding Yihui, He Jinhai, et al. An updating analysis of the climate change in China in recent 50 years[J]. Acta Meteorologica Sinica, 2004, 62(2): 228-236.]
[10] 黄小燕, 张明军, 王圣杰, 等. 西北地区近50年日照时数和风速变化特征[J]. 自然资源学报, 2011, 26(5): 825-835.
  [Huang Xiaoyan, Zhang Mingjun, Wang Shengjie, et al. Characteristics of variation in sunshine duration and wind speed in the last 50 years in Northwest China[J]. Journal of Natural Resources, 2011, 26(5): 825-835.]
[11] 汪宗成, 杨晓玲, 李天江, 等. 武威市平均风速变化特征及其对气候变暖的响应[J]. 江西农业学报, 2018, 30(12): 70-75, 82.
  [Wang Zongcheng, Yang Xiaoling, Li Tianjiang, et al. Variation characteristics of average wind speed and its response to climatic warming in Wuwei City[J]. Acta Agriculturae Jiangxi, 2018, 30(12): 70-75, 82.]
[12] Zhang R, Zhang S, Luo J, et al. Analysis of near-surface wind speed change in China during 1958-2015[J]. Theoretical and Applied Climatology, 2019, 137(72): 2785-2801.
[13] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
  [Zhu Rong, Wang Yang, Xiang Yang, et al. Stydy on climate characteristics and development potential of wind energy resources in china[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 409-418.]
[14] 熊敏诠. 近30年中国地面风速分区及气候特征[J]. 高原气象. 2015, 34(1): 39-49.
  [Xiong Minquan. Climate regionalization and characteristics of surface winds over China in recent 30 years[J]. Plateau Meteorology, 2015, 34(1): 39-49.]
[15] Ying J, Yong L, Zhao Z, et al. Changes in wind speed over China during 1956-2004[J]. Theoretical and Applied Climatology, 2010, 99(3-4): 421-430.
[16] Zha J, Zhao D, Wu J, et al. Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China[J]. Climate Dynamics, 2019, 53(3-4): 1-21.
[17] Miao H, Xu H, Huang G, et al. Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models[J]. Renewable Energy, 2023, 211(33): 809-821.
[18] Moemken J, Reyers M, Pinto J G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble[J]. International Journal of Climatology, 2016, 36(12): 783-796.
[19] Pryor S C, Barthelmie R J. Climate change impacts on wind energy: A review[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 430-437.
[20] 林湘宁, 丁苏阳, 王子璇, 等. 恶劣风况下的风机最大容许出力模型及其控制策略[J]. 中国电机工程学报, 2020, 40(1): 309-317, 397.
  [Lin Xiangning, Ding Suyang, Wang Zixuan, et al. The maximum output model of wind turbine and its control strategy under severe wind conditions[J]. Proceedings of the CSEE, 2020, 40(1): 309-317, 397.]
[21] 范兰艳, 冯淑霞, 李书君, 等. 我国北方沙尘暴天气气候特征及成因分析[J]. 现代农业科技, 2016, (3): 276-277.
  [Fan Lanyan, Feng Shuxia, Li Shujun, et al. Climatic characteristics and cause analysis of sandstorm in Northern China[J]. Modern Agricultural Science and Technology, 2016, (3): 276-277.]
[22] Yu R, Zhang X, Li G, et al. Analysis of frequency variation of thunderstorm, hail and gale wind in Eastern China from 1971 to 2000[J]. Meteorological Monthly, 2012, 38(10): 1207-1216.
[23] Gan S, Zhang W, Zong H, et al. Analysis of typhoon storm surge disasters along the south China coast and disaster prevention measures[J]. Hydro-Science and Engineering, 2012, 31(6): 51-58.
[24] 何云燕, 林确略, 杨礼林, 等. 2010年后汛期一次东风波雷雨大风天气分析[J]. 安徽农业科学, 2012, 40(4): 2264-2267, 2317.
  [He Yunyan, Lin Quelue, Yang Lilin, et al. Analysis on an easterly wave thunderstorm and gale weather during the latter flood season of 2010[J]. Journal of Anhui Agricultural Sciences, 2012, 40(4): 2264-2267, 2317.]
[25] 郑祚芳, 张秀丽, 丁海燕. 近50年北京地区主要灾害性天气事件变化趋势[J]. 自然灾害学报, 2012, 21(1): 47-52.
  [Zheng Zuofang, Zhang Xiuli, Ding Haiyan. Change trend of extreme weather events in Beijing area in recent 50 years[J]. Journal of Natural Disasters, 2012, 21(1): 47-52.]
[26] 何志强, 卢新平, 王丙兰. 首都机场雷暴大风的初步研究[J]. 气象, 2014, 40(11): 1408-1413.
  [He Zhiqiang, Lu Xinping, Wang Binglan. Preliminary study of thunderstorm gale at Beijing Capital International Airport[J]. Meteorological Monthly, 2014, 40(11): 1408-1413.]
[27] 方翀, 王西贵, 盛杰, 等. 华北地区雷暴大风的时空分布及物理量统计特征分析[J]. 高原气象, 2017, 36(5): 1368-1385.
  [Fang Chong, Wang Xigui, Sheng Jie, et al. Temporal and spatial distribution of North China thunder-gust winds and the statistical analysis of physical characteristics[J]. Plateau Meteorology, 2017, 36(5): 1368-1385.]
[28] 王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
  [Wang Hui, Zhang Lu, Shi Xingdong, et al. Some new changes of the regional climate on the Tibetan Plateau since 2000[J]. Advances in Earth Science, 2021, 36(8): 785-796.]
[29] Wang J, Feng J, Yan Z, et al. An analysis of the urbanization contribution to observed terrestrial stilling in the Beijing-Tianjin-Hebei region of China[J]. Environmental Research Letters, 2020, 15(3): 034062.
[30] Xie P, Xiong A. A conceptual model for constructing high-resolution gaugesatellite merged precipitation analyses[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D21): 21106.
[31] 刘田, 阳坤, 秦军, 等. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
  [Liu Tian, Yang Kun, Qin Jun, et al. Construction and applications of time series of monthly precipitation at weather stations in the Central and Eastern Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6): 1449-1457.]
文章导航

/