第三次新疆综合科学考察

天山北坡经济带水库群时空变化特征及驱动机制

  • 王婷 ,
  • 沈赣华 ,
  • 刘兵 ,
  • 孙莹琳 ,
  • 汪再光
展开
  • 1.石河子大学水利建筑工程学院,新疆 石河子 832000
    2.新疆德润经济建设发展有限公司,新疆 乌鲁木齐 830000
    3.石河子大学,寒旱区生态水利工程兵团重点实验室,新疆 石河子 832000
    4.石河子天兴水利勘测设计院,新疆 石河子 832000
王婷(2001-),女,硕士研究生,主要从事水资源高效利用研究. E-mail: 2496878250@qq.com
刘兵. E-mail: 515441180@qq.com

收稿日期: 2024-04-19

  修回日期: 2024-06-03

  网络出版日期: 2024-09-25

基金资助

第三次新疆综合科学考察项目(2022xjkk090207);第三次新疆综合科学考察项目(2021xjkk0804);兵团科技攻关计划项目(2021AB021);石河子大学高层次人才科研启动项目(RCZK202026)

Evolution characteristics of spatial and temporal distribution pattern and driving force analysis of reservoirs in the economic zone on the north slope of Tianshan Mountains

  • WANG Ting ,
  • SHEN Ganhua ,
  • LIU Bing ,
  • SUN Yinglin ,
  • WANG Zaiguang
Expand
  • 1. Colleye of Water Conservancy & Architectural Engineerring, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Xinjiang Derun Economic Construction and Development Co. Ltd., Urumqi 830000, Xinjiang, China
    3. Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi University, Shihezi 832000, Xinjiang, China
    4. Shihezi Tianxing Water Conservancy Survey and Design Institute, Shihezi 832000, Xinjiang, China

Received date: 2024-04-19

  Revised date: 2024-06-03

  Online published: 2024-09-25

摘要

为验证天山北坡经济带水库群建设在时间上的延续性及空间上的均衡性,利用1990—2020年遥感数据提取各水库水域面积,结合统计资料分析水库数量和库容变化过程,采用莫兰指数量化水库空间分布的聚集程度,建立时空地理加权回归模型分析水库驱动因素。结果表明:近30 a来,研究区水库水域面积呈先增后减的变化趋势,其中,1990—2015年增加了46.25%,2015—2020年减少了1.63%。水库数量和库容呈增长趋势,分别增长了64.94%、71.06%。1990—2020年各代表年份(1990年、1995年、2000年、2005年、2010年、2015年、2020年)水库莫兰指数分别为0.81、0.83、0.79、0.91、0.66、0.73、0.78,水库空间分布存在正相关性。水库分布高值区主要在奎屯河流域的农业灌溉区,低值区主要在以乌鲁木齐市为代表的工业区。影响水库库容变化的主要因素有蒸发量、降雨量、高程、人口和生产总值等。蒸发量对库容有负向影响,降雨量的影响在空间上具有不确定性,高程和人口对西段水库建设有正向影响,对东段水库建设有负向影响,生产总值对东段及西段部分区域水库建设有正向影响,对中段水库建设有负向影响。研究结果可为同类地区水库规划建设及运行管理提供参考依据。

本文引用格式

王婷 , 沈赣华 , 刘兵 , 孙莹琳 , 汪再光 . 天山北坡经济带水库群时空变化特征及驱动机制[J]. 干旱区研究, 2024 , 41(9) : 1456 -1467 . DOI: 10.13866/j.azr.2024.09.03

Abstract

The temporal continuity and spatial equilibrium of reservoir group construction in the north slope of the Tianshan Mountain Economic Belt was verified, by extracting the water area of each reservoir from the 1990-2020 remote sensing data. The variation process of reservoir quantity and storage capacity was also analyzed by combining statistical data. The Moran index was used to quantify the aggregation degree of reservoir spatial distribution, and geographically and temporally weighted regression was established to analyze the driving factors of the reservoir. The results showed that in the past 30 years, the reservoir water area in the study region first increased by 46.25% from 1990 to 2015 and then decreased by 1.63% from 2015 to 2020. The number of reservoirs and storage capacity enhanced by 64.94% and 71.06% respectively. From 1990 to 2020, the Moreland index of the reservoirs in each representative year was 0.81, 0.83, 0.79, 0.91, 0.66, 0.73, and 0.78, respectively, along with a positive correlation between the spatial distribution of the reservoirs. The high-value area of reservoir distribution was mainly concentrated in the agricultural irrigation region of the Kuitun River Basin, and the low-value area in the industrial region was represented by Urumqi City. The main factors affecting the variation in reservoir capacity were evaporation, rainfall, elevation, population, and GDP. Evaporation adversely affected storage capacity, and the effect of rainfall was not uniform in space. Altitude and population had a positive impact on the construction of the reservoir in the west section and a negative influence in the east section. The GDP had a positive association with reservoir construction in the eastern section and a part of the western section, but a negative correlation in the middle section. These results can provide a reference for reservoir planning, construction, and operation management in similar areas.

参考文献

[1] Liu H, Yin J, Feng L. The dynamic changes in the storage of the Danjiangkou Reservoir and the influence of the South-North Water Transfer Project[J]. Scientific Reports, 2018, 8(1): 8710.
[2] Lai Y Q, Zhang J, Song Y Y, et al. Comparative analysis of different methods for extracting water body Area of Miyun Reservoir and driving forces for nearly 40 Years[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(2): 451-463.
[3] 刘畅, 唐海蓉, 计璐艳, 等. 长时间序列1984—2020年密云水库水面信息遥感监测与分析[J]. 遥感学报, 2023, 27(2): 335-350.
  [Liu Chang, Tang Hairong, Ji Luyan, et al. Spatial-temporal water area monitoring of the Miyun Reservoir using remote sensing imagery from 1984 to 2020[J]. National Remote Sensing Bulletin, 2023, 27(2): 335-350.]
[4] 吕明权, 吴胜军, 马茂华, 等. 中国小型水体空间分布特征及影响因素[J]. 中国科学: 地球科学, 2022, 52(8): 1443-1461.
  [Lv Mingquan, Wu Shengjun, Ma Maohua, et al. Small water bodies in China: Spatial distribution and influencing factors[J]. Scientia Sinica (Terrae), 2022, 52(8): 1443-1461.]
[5] Yang X W, Wang N L, Chen A A, et al. Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960-2018 and their causes[J]. Catena, 2020, 191: 104566.
[6] 李崇巍, 王志慧, 汤秋鸿, 等. 1986—2019年黄河流域地表水体动态变化及其影响因素[J]. 地理学报, 2022, 77(5): 1153-1168.
  [Li Chongwei, Wang Zhihui, Tang Qiuhong, et al. Dynamics of surface water area in the Yellow River Basin and its influencing mechanism during 1986-2019 based on Google Earth Engine[J]. Acta Geographica Sinica, 2022, 77(5): 1153-1168.]
[7] Marzi D, Gamba P. Inland water body mapping using multitemporal Sentinel-1 SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11789-11799.
[8] 宋奇, 史舟, 冯春晖, 等. 基于1990—2019年多时相影像的干旱区绿洲景观格局分析[J]. 干旱区研究, 2022, 39(2): 594-604.
  [Song Qi, Shi Zhou, Feng Chunhui, et al. Analysis of landscape pattern from 1990 to 2019 based on multi-temporal imagery in arid oasis[J]. Arid Zone Research, 2022, 39(2): 594-604.]
[9] Busker T, Roo A D, Gelati E, et al. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry[J]. Hydrology and Earth System Sciences, 2019, 23(2): 669-690.
[10] Sheffield J, Wood E F, Pan M, et al. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions[J]. Water Resources Research. 2018, 54(12): 9724-9758.
[11] 马振刚, 李黎黎, 张俊贵. 官厅和密云水库水域面积变化及影响因素比较研究[J]. 干旱区研究, 2023, 40(8): 1229-1239.
  [Ma Zhengang, Li Lili, Zhang Jungui. Comparative study on water area changes and influencing factors in the Guanting and Miyun reservoirs[J]. Arid Zone Research, 2023, 40(8): 1229-1239.]
[12] Donchyts G, Winsemius H, Baart F, et al. High-resolution surface water dynamics in Earth’s small and medium-sized reservoirs[J]. Scientific Reports, 2022, 12(1): 13776.
[13] 李健锋, 叶虎平, 张宗科, 等. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 781-788.
  [Li Jianfeng, Ye Huping, Zhang Zongke, et al. Spatiotemporal change analysis of Sri Lanka Inland water based on landsat imagery[J]. Journal of Geo-information Science, 2019, 21(5): 781-788.]
[14] 郝固状, 甘甫平, 闫柏琨, 等. 红崖山水库近20年面积变化遥感调查及驱动力分析[J]. 国土资源遥感, 2021, 33(2): 192-201.
  [Hao Guzhuang, Gan Fuping, Yan Baikun, et al. Remote sensing survey and driving force analysis of area change of Hongyashan Reservoir in the past twenty years[J]. Remote Sensing for Landand Resources, 2021, 33(2): 192-201.]
[15] Du B J, Wang Z M, Mao D H, et al. Tracking lake and reservoir changes in the Nenjiang Watershed, Northeast China: Patterns, trends, and drivers[J]. Water, 2020, 12(4): 1108.
[16] 杨昀则, 田鹏, 李加林, 等. 浙江省水域系统时空变化特征及驱动力分析[J]. 浙江大学学报(理学版), 2022, 49(4): 508-520.
  [Yang Yunze, Tian Peng, Li Jialin, et al. Analysis on the characteristics and driving forces of spatiotemporal changes of Zhejiang water system[J]. Journal of Zhejiang University (Science Edition), 2022, 49(4): 508-520.]
[17] 于成龙, 王志春, 刘丹, 等. 基于SWAT模型的西辽河流域自然湿地演变过程及驱动力分析[J]. 农业工程学报, 2020, 36(22): 286-297.
  [Yu Chenglong, Wang Zhichun, Liu Dan, et al. Evolution process and driving force analysis of natural wetlands in Xiliao River Basin based on SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 286-297.]
[18] 李娜娜, 高飞, 魏圣钊, 等. 四川省湿地类型变化的自然-社会经济驱动力分析[J]. 生态学报, 2020, 40(16): 5502-5512.
  [Li Nana, Gao Fei, Wei Shengzhao, et al. Natural and social economy driving forces of wetland types changes in Sichuan Province[J]. Acta Ecologica Sinica, 2020, 40(16): 5502-5512.]
[19] 赵永玉, 阿里木江·卡斯木, 高鹏文, 等. 基于GIS的天山北坡城市群人居环境自然适宜性评价[J]. 生态科学, 2023, 42(5): 84-93.
  [Zhao Yongyu, Alimujiang Kasmu, Gao Pengwen, et al. Evaluation of natural suitability of human settlements in urban agglomeration on the northern slope of Tianshan Mountain based on GIS[J]. Ecological Science, 2023, 42(5): 84-93.]
[20] 李江, 柳莹, 吴涛, 等. 新疆水库大坝70年建设成就[J]. 中国水利水电科学研究院学报, 2020, 18(5): 322-330.
  [Li Jiang, Liu Ying, Wu Tao, et al. 70 years of dam construction in Xinjiang[J]. Journal of China Institute of Water Resources and Hydropower Research, 2020, 18(5): 322-330.]
[21] 方创琳. 天山北坡城市群可持续发展战略思路与空间布局[J]. 干旱区地理, 2019, 42(1): 1-11.
  [Fang Chuanglin. Strategic thinking and spatial layout for the sustainable development of urban agglomeration in northern slope of Tianshan Mountains[J]. Arid Land Geography, 2019, 42(1): 1-11.]
[22] 刘琳, 张正勇, 刘芬, 等. 天山北坡经济带城市PM2.5质量浓度时空分布及模拟分析[J]. 环境科学研究, 2018, 31(11): 1849-1857.
  [Liu Lin, Zhang Zhengyong, Liu Fen, et al. Spatial-temporal distribution and simulation analysis of PM2.5 concentration of the cities in the Northern Slope Economic Zone of Tianshan Mountain[J]. Research of Environmental Sciences, 2018, 31(11): 1849-1857.]
[23] Jiang H R, Ji L Y, Yu K, et al. Analysis of the substantial growth of water bodies during the urbanization process using landsat imagery—A case study of the Lixiahe region, China[J]. Remote Sensing, 2024, 16(4): 711.
[24] 王晓飞, 黄粤, 刘铁, 等. 近60 a伊塞克湖水量平衡变化及影响因素分析[J]. 干旱区研究, 2022, 39(5): 1576-1587.
  [Wang Xiaofei, Huang Yue, Liu Tie, et al. Analysis of water balance change and influencing factors in Issyk-Kul Lake in recent 60 years[J]. Arid Zone Research, 2022, 39(5): 1576-1587.]
[25] Tao S L, Fang J Y, Ma S H, et al. Changes in China’s lakes: Climate and human impacts[J]. National Science Review, 2020, 7(1): 132-140.
[26] 王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1): 81-87.
  [Wang Xiulan, Bao Yuhai. Research methods of land use dynamic change[J]. Progress in Geography, 1999, 18(1): 81-87.]
[27] G?k G, Gürbüz O A. Application of geostatistics for grid and random sampling schemes for a grassland in Nigde, Turkey[J]. Environmental Monitoring and Assessment, 2020, 192(5): 1-12.
[28] Chen J H, Ma H C, Yang S, et al. Assessment of urban resilience and detection of impact factors based on spatial autocorrelation analysis and GeoDetector model: A case of Hunan Province[J]. ISPRS International Journal of Geo-Information, 2023, 12(10): 391.
[29] 田鹏, 李加林, 王丽佳, 等. 基于GTWR模型的浙江省海岸带三维生态足迹动态变化及其影响因素[J]. 应用生态学报, 2020, 31(9): 3173-3186.
  [Tian Peng, Li Jialin, Wang Lijia, et al. Dynamics of three-dimensional ecological footprint of Zhejiang coastal zone and its influencing factors based on GTWR model[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3173-3186.]
[30] Mi Y F, Sun K, Li L, et al. Spatiotemporal pattern analysis of PM2.5 and the driving factors in the middle Yellow River urban agglomerations[J]. Journal of Cleaner Production, 2021, 299(1): 126904.
[31] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401.
[32] 叶盼青, 阿不都艾尼·阿不里, 孙小丽, 等. 天山北坡经济带土壤重金属来源及污染评价[J]. 中国环境科学, 2022, 42(10): 4704-4712.
  [Ye Panqing, Abdugheni Abliz, Sun Xiaoli, et al. Source analysis and pollution assessment of soil heavy metals in the economic belt on the northern slope of Tianshan Mountains[J]. China Environmental Science, 2022, 42(10): 4704-4712.]
[33] 何思聪, 董恒, 张城芳. 1994—2015年武汉城市圈湖泊演变规律及驱动力分析[J]. 生态与农村环境学报, 2020, 36(10): 1260-1267.
  [He Sicong, Dong Heng, Zhang Chengfang. Analysis on dynamic changes and driving force of lake area in Wuhan City Circle from 1994 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(10): 1260-1267.]
[34] 李旭冰. 西天山北麓湖泊时空动态变化及影响因素研究[D]. 南京: 南京信息工程大学, 2022.
  [Li Xubing. Study on Temporal and Spatial Dynamic Changes and Influencing Factors of Lakes at the Northern Foot of the West Tianshan Mountains[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.]
[35] 李江, 柳莹, 刘生云, 等. 新时期新疆水库大坝建设的主要问题与对策建议[J]. 干旱区地理, 2020, 43(6): 1409-1416.
  [Li Jiang, Liu Ying, Liu Shengyun, et al. Main problems and countermeasures of reservoir dam construction in Xinjiang in the new period[J]. Arid Land Geography, 2020, 43(6): 1409-1416.]
文章导航

/