呼伦贝尔草原风蚀坑植物分布空间异质效应
收稿日期: 2024-03-29
修回日期: 2024-05-16
网络出版日期: 2024-08-01
基金资助
内蒙古重点研发和成果转化计划项目(2022YFDZ0055)
Distribution characteristics of vegetation around blowout in the Hulun Buir Glassland
Received date: 2024-03-29
Revised date: 2024-05-16
Online published: 2024-08-01
风蚀坑是草原常见的风蚀地貌类型,其发生风蚀同时伴随不同程度的沙埋作用,造成其不同区域植被生长及分布存在一定差异。为明晰草原风蚀坑不同区域的植被组成特征与分布规律,本研究以呼伦贝尔草原处于活跃发展阶段的风蚀坑为研究对象,调查风蚀坑5个不同区域(沙坑、上风向区、左积沙区、右积沙区、下风向区)植物种类及其生长情况,并以周边天然草地为对照(CK),分析风蚀坑对植物空间分布的异质效应,拟为草原风蚀坑发展机制研究及其植被恢复技术提供重要依据。研究表明:(1) 风蚀坑与CK相比植物种类显著增加,植物种类达到了42种,隶属于13科34属,CK为17种,隶属于8科16属,但增加的植物种多为沙蓬、兴安虫实等沙生植物。(2) 风蚀坑不同区域植物种存在显著的异质性,沙坑主要植物种为菊科,植物种数量较CK分别减少85.42%。上风向处、左积沙区、右积沙区等区域植物种以苋科为主,下风向处以禾本科植物为主,分别增加了47.05%、117.75%、35.29%、29.17%。(3) 不同区域植物长势存在较大差异,沙坑、下风向区较CK差异最显著,植株密度降低了99.63%、89.73%,植被盖度降低了84.48%、69.06%,地上生物量降低了93.15%、56.78%。(4) 下风向区沙埋覆盖草地面积最大,随着沙坑边缘经过积沙区向草地延伸,植物种类数量逐渐接近CK,重合度可达到52.63%,苍耳、沙蓬等植物消失。
包志鑫 , 袁立敏 , 武红燕 , 鲁海涛 , 韩照日格图 . 呼伦贝尔草原风蚀坑植物分布空间异质效应[J]. 干旱区研究, 2024 , 41(7) : 1185 -1194 . DOI: 10.13866/j.azr.2024.07.10
Blowouts are a common type of wind erosion landform in grasslands, and their occurrence is accompanied by different degrees of sand burial, resulting in specific variations in vegetation growth and distribution among different areas. This study focused on the blowouts in the active development stage of the Hulun Buir grassland as the research object to clarify the characteristics and distribution of vegetation in various areas of grassland blowouts. We investigated plant species and their growth in five different areas of the blowouts (sand pit, upwind, left sand accumulation, right sand accumulation, and downwind). The study also analyzed the heterogeneous effect of blowouts on the spatial distribution of plants in the blowout without being affected by sand burial in the upper wind direction as CK. This study aims to provide an essential basis for studying the development mechanisms of grassland blowouts and vegetation restoration technology. The results showed the following: (1) Compared with CK, the plant species of the wind erosion crater increased significantly, with 42 species belonging to 13 families and 34 genera, while CK had only 17 species belonging to eight families and 16 genera; most of these species were psammophytessuch as Agriophyllum squarrosum and Corispermum chinganicum insects. (2) There was marked heterogeneity in plant species from different areas of the blowout; the main species in the pit belonged to Asteraceae, and the number of species decreased by 85.42% compared with CK; the number of plant species in the upwind direction, and the left and right sand accumulation areas were dominated by those from Amaranthaceae; grasses were the primary plants in the downwind direction; and the number of species enhanced by 47.05%, 117.75%, 35.29%, and 29.17%, respectively, compared with CK. (3) The plant growth varied remarkably in the different regions, most significantly between the sand pit and downwind area compared with CK; plant density declined by 99.63% and 89.73%, vegetation coverage by 84.48% and 69.06%, and aboveground biomass by 93.15% and 56.78%. (4) The area of the sand-buried grasslands in the downwind area was the largest; the number of species gradually approached that of CK as the sand pit edge extended to the grasslands through the sandy area; the coincidence degree reached 52.63%; and plants such as Xanthium sibiricum and Agriophyllum squarrosum disappeared.
Key words: blowouts; psammophytes; class; biomass; Hulun Buir Sandy Land
[1] | 庄燕美, 哈斯. 沙丘风蚀坑的形态及动力过程的研究进展[J]. 干旱区地理, 2005, 28(5): 632-637. |
[Zhuang Yanmei, Ha Si. Progress of the tudy on shapes and dynamical process of blowouts on dunes[J]. Arid Land Geigraphy, 2005, 28(5): 632-637.] | |
[2] | Malakouti M J, Lewis D T, Stubbendieck J. Effect of grasses and soil properties on wind erosion in sand blowouts[J]. Journal of Range Management, 1978, 31(6): 417-420. |
[3] | 张绍云, 董玉祥, 哈斯额尔敦, 等. 福建海坛岛海岸沙地风蚀坑形态动力学与形态演化特征[J]. 地理研究, 2024, 43(1): 255-271. |
[Zhang Shaoyun, Dong Yuxiang, Hasieerdun, et al. Morphodynamics and morphological evolution characteristics of blowouts dunefields: A case study in Haitan Island, Fujian[J]. Geographical Research, 2024, 43(1): 255-271.] | |
[4] | 张德平, 王效科, 哈斯, 等. 呼伦贝尔沙质草原风蚀坑研究(1): 形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6): 894-902, 1052-1058. |
[Zhang A Munkdalai, Wang Xiaoke, Ha Si, et al. Hulun Buir sandy grassl and blowouts, geo morphology, classification, and significances[J]. Journal of Research, 2006, 26(6): 894-902, 1052-1058.] | |
[5] | 车雪华, 罗万银, 邵梅, 等. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109. |
[Che Xuehua, Luo Wanyin, Shao Mei, et al. Form-flow feedback within blowouts at different developing stages in the Gonghe Basin, Qinghai Province[J]. Advances in Earth Science, 2021, 36(1):95-109.] | |
[6] | 张惜伟, 汪季, 海春兴, 等. 呼伦贝尔沙质草原风蚀坑地表风沙流结构特征[J]. 干旱区研究, 2018, 35(6): 1505-1511. |
[Zhang Xiwei, Wang Ji, Hai Chunxing, et al. Structure of drifting sand flow over the surface of blowouts in the hulun Buir sandy grasslands[J]. Arid Zone Research, 2018, 35(6): 1505-1511.] | |
[7] | Hesp P A, Hyde R. Flow dynamics and geomorphology of a trough blowout[J]. Sedimentology, 2010, 43(3): 505-525. |
[8] | Smyth T A G, Jackson D, Cooper A. Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1847-1854. |
[9] | 张德平, 孙宏伟, 王效科, 等. 呼伦贝尔沙质草原风蚀坑研究(Ⅱ): 发育过程[J]. 中国沙漠, 2007, 27(1): 20-24, 170-171. |
[Zhang A Munkdalai, Sun Hongwei, Wang Xiaoke, et al. Hulun Buir sandy grassl and blowouts(Ⅱ): Process of development and landscape evolution[J]. Journal of Desert Research, 2007, 27(1): 20-24, 170-171.] | |
[10] | 周炎广, 陈惠中, 管超, 等. 呼伦贝尔沙地风蚀坑粒度特征及其环境意义[J]. 中国沙漠, 2018, 38(4): 724-733. |
[Zhou Yanguang, Chen Huizhong, Guan Chao, et al. Grain size characteristics of the blowout and its environmental significance in the Hulun Buir sandy land, China[J]. Journal of Desert Research, 2018, 38(4): 724-733.] | |
[11] | 张萍, 哈斯, 王帅, 等. 呼伦贝尔沙质草原风蚀坑积沙区的植被分带性[J]. 自然资源学报, 2008, 23(2): 237-244. |
[Zhang Ping, Ha Si, Wang Shuai, et al. Zonation of vegetation on depositional area of blowout in Hulun Buir glassland[J]. Journal of Natural Resources, 2008, 23(2): 237-244.] | |
[12] | 满良, 哈斯, 张萍, 等. 呼伦贝尔草原风蚀坑及下风侧积沙区植被小群落特征[J]. 应用生态学报, 2008, 19(10): 2177-2181. |
[Man Liang, Ha Si, Zhang Ping, et al. Micri-community characteristics of vegetations in blowouts and depositional areas of Hulun Buir grassland, Inner Mongolia[J]. Journal of Applied Ecologys, 2008, 19(10): 2177-2181.] | |
[13] | 闫德仁, 黄海广, 胡小龙, 等. 风蚀坑土壤风蚀控制与植被恢复技术[J]. 内蒙古林业科技, 2019, 45(1): 1-4, 33. |
[Yan Deren, Huang Haiguang, Hu Xiaolong, et al. Wind erosion control and vegetation restoration in blowout[J]. Journal of Inner Mongolia Forestry Science & Technology, 2019, 45(1): 1-4, 33.] | |
[14] | 薛博, 袁立敏, 黄海广, 等. 沙障对风蚀坑种子库特征的影响研究[J]. 内蒙古林业科技, 2020, 46(3): 13-18. |
[Xue Bo, Yuan Limin, Huang Haiguang, et al. Effects of sand barriers on characteristics of seed bank in blowout[J]. Journal of Inner Mongolia Forestry Science & Technology, 2020, 46(3): 13-18.] | |
[15] | 袁立敏, 杨制国, 薛博, 等. 呼伦贝尔草原风蚀坑土壤水分异质效应研究[J]. 干旱区研究, 2022, 39(5): 1598-1606. |
[Yuan Limin, Yang Zhiguo, Xue Bo, et al. Heterogeneity of soil moisture of blowouts in Hulun Buir grassland[J]. Arid Zone Research, 2022, 39(5): 1598-1606.] | |
[16] | 张金鹏. 呼伦贝尔沙化草地植被恢复模式效果评价及动态分析[D]. 北京: 北京林业大学, 2010. |
[Zhang Jinpeng. Evaluation and Dynamic Analysis on the Vegetation Recovery Mode in Hulun Buir’s Desertified Grassland[D]. Beijing: Beijing Forestry University, 2010.] | |
[17] | 张惜伟. 典型沙质草原风蚀坑演化过程与发育机理研究[D]. 呼和浩特: 内蒙古农业大学, 2018. |
[Zhang Xiwei. Study on Evolution Process and Development Mechanism of Blowouts in Typical Sandy Grassland[D]. Hohhot: Inner Mongolia Agricultural University, 2018.] | |
[18] | 张德平, 王效科, 胡日乐, 等. 呼伦贝尔沙质草原风蚀坑研究(Ⅲ): 微地貌和土层的影响[J]. 中国沙漠, 2007, 27(1): 25-31. |
[Zhang A Munkdalai, Wang Xiaoke, U Hurrle, et al. Hulun Buir sandy grassl and blowouts(Ⅲ): Influence of soil layer and miceorelief[J]. Journal of Desert Research, 2007, 27(1): 25-31.] | |
[19] | 刘东霞, 卢欣石, 李文红. 呼伦贝尔退化草地植被演替特征研究[J]. 干旱区资源与环境, 2008, 22(8): 103-110. |
[Liu Dongxia, Lu Xinshi, Li Wenhong. Astudy on vegetation succession of degradation grassland in Hulun Buir steppe[J]. Journal of Arid Land Resources and Environment, 2008, 22(8): 103-110.] | |
[20] | 闫守刚, 许清涛, 曹凤伟. 半干旱沙区流动沙丘与丘间低地过渡带的植被空间变化过程[J]. 东北林业大学学报, 2014, 42(10): 60-64. |
[Yan Shougang, Xu Qingtao, Cao Fengwei. Vegetation processes of transition zones between active dunes and interdune lowlands in semi-arid dune areas[J]. Journal of Northeast Forestry University, 2014, 42(10): 60-64.] | |
[21] | 张乐, 刘志民. 丘间低地生态过程研究进展[J]. 生态学杂志, 2007, 26(7): 1101-1106. |
[Zhang Le, Liu Zhimin. Research progress in ecological processes in dune slacks[J]. Journal of Ecology, 2007, 26(7): 1101-1106.] | |
[22] | 龚逸夫, 潘美慧, 李娜, 等. 西藏定结地区不同类型沙丘表层沉积物粒度特征及其环境意义[J]. 干旱区地理, 2024, 47(4): 588-598. |
[Gong Yifu, Pan Meihui, Li Na, et al. Grain size characteristics and environmental significance of different types of dune surface sediments in the Dinggye area, southern Xizang[J]. Arid Land Geography, 2024, 47(4): 588-598.] | |
[23] | Burri K, Gromke C, Lehning M, et al. Aeolian sediment trans-port over vegetation canopies: A wind tunnel study with live plants[J]. Aeolian Research, 2011, 3(2): 205-213. |
[24] | Dong Z B, Gao S, Fryrear D W. Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation[J]. Journal of Arid Environment, 2001, 49(3): 485-505. |
[25] | 钟韩珊, 李元哲, 张晓雨, 等. 不同类型沙地植物群落特征及多样性研究[J]. 湖北大学学报(自然科学版), 2019, 41(4): 349-355. |
[Zhong Hanshan, Li Yuanzhe, Zhang Xiaoyu, et al. Study on community characteristics and diversity of different types of sand land plants[J]. Journal of Hubei University (Natural Science), 2019, 41(4): 349-355.] | |
[26] | 贺宇, 丁国栋, 汪晓峰, 等. 水分和沙埋对4种沙生植物种子萌发和出苗的影响[J]. 中国沙漠, 2013, 33(6): 1711-1716. |
[He Yu, Ding Guodong, Wang Xiaofeng, et al. Effects of water supply and sand burial on seed germination and seedling emergence of four psammophytes[J]. Journal of Desert Research, 2013, 33(6): 1711-1716.] | |
[27] | 孔玲玲, 董治宝, 白子怡, 等. 植被盖度和配置方式对土壤风蚀影响的风洞试验[J]. 中国沙漠, 2024, 44(1): 235-243. |
[Kong Lingling, Dong Zhibao, Bai Ziyi, et al. Effects of vegetation cover and configuration on soil wind erosion based on wind tunnel experiments[J]. Journal of Desert Research, 2024, 44(1): 235-243.] | |
[28] | 刘艳萍, 刘铁军, 蒙仲举. 草原区植被对土壤风蚀影响的风洞模拟试验研究[J]. 中国沙漠, 2013, 33(3): 668-672. |
[Liu Yanping, Liu Tiejun, Meng Zhongju. Wind tunnel simulation test on the influence factors of wind erosion in grassland areas[J]. Journal of Desert Research, 2013, 33(3): 668-672.] | |
[29] | Baskin C C, Baskin J M. Germination ecophysiology of herbaceous plant species in a temperate region[J]. American Journal of Botany, 1998, 75(2): 286-305. |
[30] | 马全林, 张德魁, 刘有军, 等. 石羊河中游沙漠化逆转过程土壤种子库的动态变化[J]. 生态学报, 2011, 31(4): 989-997. |
[Ma Quanlin, Zhang Dekui, Liu Youjun, et al. Dynamics of soil seed banks in the reversion process of desertification in the middle reaches of the Shiyang River[J]. Acta Ecologica Sinica, 2011, 31(4): 989-997.] | |
[31] | Manu M A. Adaptations enhancing survival and establishment of seedlings on coastal dune systems[J]. Vegetatio, 1994, 111(1): 59-70 |
[32] | 赵存玉, 姚正毅, 薛娴. 近地表风沙对植物及植被的影响综述[J]. 中国沙漠, 2014, 34(5): 1307-1312. |
[Zhao Cunyu, Yao Zhengyi, Xue Xian. Review on the research in influence of near surface sand flow on psammophytes and psammophilous vegetation[J]. Journal of Desert Research, 2014, 34(5): 1307-1312.] |
/
〈 | 〉 |