水土资源

基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系

  • 郑柳娜 ,
  • 江红南 ,
  • 孙梦婷
展开
  • 新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830017
郑柳娜(1998-),女,硕士研究生,主要从事生态学研究. E-mail: 18833064955@163.com
江红南. E-mail: jiang_hn@xju.edu.cn

收稿日期: 2023-08-28

  修回日期: 2024-03-28

  网络出版日期: 2024-08-01

基金资助

新疆维吾尔自治区自然科学基金重点项目(2021D01D06);国家自然科学基金(41561081);新疆绿洲生态重点实验室开放课题(2023D04060);新疆大学博士启动基金(BS190205)

Correlations between soil water content, salinity, and fractional vegetation cover in the Ugan-Kuqa River Delta Oasis of Xinjiang ascertained based on remote sensing images

  • ZHENG Liuna ,
  • JIANG Hongnan ,
  • SUN Mengting
Expand
  • College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, Xinjiang, China

Received date: 2023-08-28

  Revised date: 2024-03-28

  Online published: 2024-08-01

摘要

基于土壤样本实测数据及遥感影像数据,以典型干旱区新疆渭干河—库车河三角洲绿洲为研究区,采用像元二分模型估算植被覆盖度(Fractional vegetation cover,FVC),利用反距离权重插值及相关、中介效应等统计学分析方法,研究0~50 cm不同深度土壤水盐含量与FVC的关系,可为干旱区优化资源配置和制定生态恢复措施提供理论依据。结果表明:(1) FVC在空间上呈现由西向东逐渐减少的趋势,且随着土壤含水量的减少和含盐量的增加而减少。(2) 各土层含水量均呈自上而下逐渐增加的趋势,各土层含盐量均呈自上而下逐渐减少的趋势,且不同深度水盐含量呈中等及以上变异性。(3) 仅10~20 cm土壤含水量、FVC和0~10 cm土壤含水量间有中介效应的存在。深层10~20 cm、10~30 cm和30~50 cm土壤含盐量、FVC和0~10 cm表层土壤含盐量间有中介效应,即深层土壤含盐量通过影响表层土壤含盐量而对FVC产生影响。(4) 0~10 cm表层土壤含盐量对FVC的影响最大,47.90%以上的FVC空间变异会受到该层土壤含盐量的影响,且不同深度土壤含盐量对FVC的影响效果均大于土壤含水量的影响效果。

本文引用格式

郑柳娜 , 江红南 , 孙梦婷 . 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024 , 41(7) : 1131 -1139 . DOI: 10.13866/j.azr.2024.07.05

Abstract

Based on the soil samples and remote sensing image data, this paper takes the Ugan-Kuqa River Delta Oasis, a typical arid region in Xinjiang, as the study area. FVC was calculated utilizing the pixel dichotomous model. Inverse distance weight interpolation and statistical analysis methods such as correlation and mediating effect analyses were used to study the impact of soil water content and salinity at depths of 0-50 cm on the spatial changes of FVC. This paper can provide a theoretical basis for optimizing resource allocation and formulating ecological restoration measures in arid areas. The results were: (1) FVC showed a west-east decreasing trend in space, directly proportional to the water content and inversely with the salinity. (2) The water content of each soil layer gradually enhanced from top to bottom, and the salinity revealed an inverse trend, with≥moderate variability in water content and salinity at different depths. (3) The soil water content at the 10-20 cm layer alone exhibited a mediating effect between FVC and the water content of the 0-10 cm surface layer. The salinity in the deeper layers of 10-20, 10-30, and 30-50 cm exhibits a mediating effect between FVC and salinity in the 0-10 cm layer. In other words, the salinity in deeper soil layers influenced FVC by affecting the salinity of the surface soil. (4) The salinity in the 0-10 cm layer most significantly impacted the FVC, influencing>47.90% of the spatial variability of FVC. Additionally, the impact of salinity at various soil depths on FVC surpasses that of water content.

参考文献

[1] Liu Y W, Shen X J, Zhang J Q, et al. Temporal and spatial variation in vegetation coverage and its response to climatic change in marshes of Sanjiang Plain, China[J]. Atmosphere, 2022, 13(12): 2077.
[2] Li M L, Qin Y B, Zhang T B, et al. Climate change and anthropogenic activity Co-Driven vegetation coverage increase in the Three-North Shelter Forest Region of China[J]. Remote Sensing, 2023, 15(6): 1509.
[3] Xu Y M, Zhuang Q L. The importance of interactions between snow, permafrost and vegetation dynamics in affecting terrestrial carbon balance in circumpolar regions[J]. Environmental Research Letters, 2023, 18(4): 044007.
[4] Trautmann T, Koirala S, Carvalhais N, et al. The importance of vegetation in understanding terrestrial water storage variations[J]. Hydrology and Earth System Sciences, 2022, 26(4): 1089-1109.
[5] 高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019, 42(4): 830-837.
  [Gao Yulian, Liu Jinbao, Liu Weiyang, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought in the oasis area in recent 14 years, the southern Xinjiang[J]. Arid Land Geography, 2019, 42(4): 830-837.]
[6] Xin Z M, Feng W, Zhan H B, et al. Atmospheric vapor impact on desert vegetation and desert ecohydrological system[J]. Plants, 2023, 12(2): 223.
[7] Huang K D, Xu C, Qian Z Z, et al. Effects of pruning on vegetation growth and soil properties in poplar plantations[J]. Forests, 2023, 14(3): 501.
[8] Zhao W J, Zhou C, Zhou C Q, et al. Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing[J]. Remote Sensing, 2022, 14(8): 1804.
[9] Chen Y W, Du Y Y, Yin H Y, et al. Radar remote sensing-based inversion model of soil salt content at different depths under vegetation[J]. PeerJ, 2022, 10: e13306.
[10] 康满萍, 赵成章, 白雪, 等. 苏干湖湿地植被覆盖度时空变化格局[J]. 生态学报, 2020, 40(9): 2975-2984.
  [Kang Manping, Zhao Chengzhang, Bai Xue, et al. The temporal and spatial variation pattern of vegetation coverage in Suganhu wetland[J]. Acta Ecologica Sinica, 2020, 40(9): 2975-2984.]
[11] Tang K S, Wulan T Y, Wu Z F, et al. Correlation between vegetation coverage and thickness of chestnut soil layer in typical grassland based on multisource satellite remote sensing[J]. Mobile Information Systems, 2022, 2022: 1116781.
[12] Wang F, Chen Y N, Li Z, et al. Assessment of the irrigation water requirement and water supply risk in the Tarim river Basin, Northwest China[J]. Sustainability, 2019, 11(18): 4941.
[13] 江红南. 新疆不同区域土壤盐渍化光学遥感定量监测研究[D]. 武汉: 武汉大学, 2018.
  [Jiang Hongnan. Quantitative Monitoring on Soil Salinization Utilizing Optical Remote Sensing in Different Regions of Xinjiang, China[D]. Wuhan: Wuhan University, 2018.]
[14] 何宝忠, 丁建丽, 刘博华, 等. 渭库绿洲土壤盐渍化时空变化特征[J]. 林业科学, 2019, 55(9): 185-196.
  [He Baozhong, Ding Jianli, Liu Bohua, et al. Spatiotemporal variation of soil salinization in Weigan-Kuqa River Delta Oasis[J]. Scientia Silvae Sinicae, 2019, 55(9): 185-196.]
[15] Guo B, Han F, Jiang L. An improved dimidiated pixel model for vegetation fraction in the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(2): 219-231.
[16] Yan K, Gao S, Chi H, et al. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
[17] 李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2003.
  [Li Miaomiao. The Method of Vegetation Fraction Estimation by Remote Sensing[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2003.]
[18] 边慧芹. 渭干河-库车河三角洲绿洲植被覆盖度与土壤盐渍化响应关系研究[D]. 乌鲁木齐: 新疆师范大学, 2020.
  [Bian Huiqin. Study on the Relationship Between Vegetation Coverage and Soil Salinization Response in Weigan-Kuche River Delta Oasis in Xinjiang, China[D]. Urumqi: Xinjiang Normal University, 2020.]
[19] 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.
  [Wen Zhonglin, Ye Baojuan. Analyses of mediating effects: The development of methods and models[J]. Advances in Psychological Science, 2014, 22(5): 731-745.]
[20] Howard J H, Baldwin R F, Brown B L. Exploratory analysis for complex-life-cycle amphibians: Revealing complex forest-reproductive effort relationships using redundancy analysis[J]. Forest Ecology and Management, 2012, 270: 175-182.
文章导航

/