天气与气候

基于降水量距平百分率的1961—2020年鄂尔多斯气象干旱趋势

  • 李烨 ,
  • 江伟 ,
  • 陈晓俊 ,
  • 吴英杰 ,
  • 王思楠
展开
  • 1.西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
    2.水利部牧区水利科学研究所,内蒙古 呼和浩特 010020
李烨(1998-),男,硕士研究生,主要从事气象干旱时空演变及预测研究. E-mail: 17612918713@163.com
江伟. E-mail: weijianglut@126.com

收稿日期: 2023-10-20

  修回日期: 2024-04-24

  网络出版日期: 2024-08-01

基金资助

鄂尔多斯市科技计划项目(2022YY018);内蒙古自然科学青年基金(2023QN05003)

Drought trends in Ordos from 1961 to 2020 based on meteorological precipitation anomaly percentage

  • LI Ye ,
  • JIANG Wei ,
  • CHEN Xiaojun ,
  • WU Yingjie ,
  • WANG Sinan
Expand
  • 1. College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
    2. Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot 010020, Inner Mongolia, China

Received date: 2023-10-20

  Revised date: 2024-04-24

  Online published: 2024-08-01

摘要

鄂尔多斯由于干旱事件频发,严重影响到当地的经济发展。研究鄂尔多斯的干旱时空演变特征对抗旱减灾工作的开展十分必要。本文采用1961—2020年鄂尔多斯85个格点的逐月降水数据,利用游程理论分析了标准化降水指数(Standardized Precipitation Index,SPI)和降水量距平百分率指数(Precipitation Anomaly Percentage,Pa)在该地区的适用性,并进一步采用反距离插值等方法分析干旱时空演变特征,结果表明:(1) Pa指数对鄂尔多斯干旱的描述具有很强的敏感性和准确性。(2) 干旱年际变化频率高,夏旱发生频率最高,为16.7%,冬旱发生频率最低,为13.3%,其中,干旱发生率随干旱等级升高而逐渐降低。(3) 鄂尔多斯西部比东部更易发生严重干旱,不受旱灾影响的概率逐渐由42%增大为75%。(4) 春夏两季的干旱情况对整年的干旱情况影响最大,秋冬两季的干旱形势有所好转,并且冬季好转更明显。

本文引用格式

李烨 , 江伟 , 陈晓俊 , 吴英杰 , 王思楠 . 基于降水量距平百分率的1961—2020年鄂尔多斯气象干旱趋势[J]. 干旱区研究, 2024 , 41(7) : 1099 -1111 . DOI: 10.13866/j.azr.2024.07.02

Abstract

Due to the frequent occurrence of drought events in Ordos, the local economic development has been seriously affected. Therefore, it is necessary to study the temporal and spatial evolution characteristics of droughts. This study used the monthly precipitation data of 85 grid points in Ordos from 1961 to 2020. It analyzed the applicability of the Standardized Precipitation Index and Precipitation Anomaly Percentage in the region by using the run theory. It further examined the temporal and spatial evolution characteristics of drought by inverse distance interpolation. The conclusions were (1) The Pa index had strong sensitivity and accuracy for drought description. (2) The interannual variation of drought was characterized by high frequency, low intensity, and robust continuity. In terms of seasonal changes, the frequency of summer drought was the highest, reaching 16.7%, and that of winter drought was the lowest, at only 13.3%; the drought incidence gradually decreased with an increase in the drought level. (3) The western part of the study area was more prone to enhanced drought levels than the eastern part. Simultaneously, the probability of being unaffected by drought has gently elevated from 42% to 75%. (4) The drought situation in the spring and summer impacted the annual drought situation the most; the situation in autumn and winter improved, more obviously in winter.

参考文献

[1] 李新周, 刘晓东, 马柱国. 近百年来全球主要干旱区的干旱化特征分析[J]. 干旱区研究, 2004, 21(2): 97-103.
  [Li Xinzhou, Liu Xiaodong, Ma Zhuguo. Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years[J]. Arid Zone Research, 2004, 21(2): 97-103.]
[2] 春兰, 秦福莹, 宝鲁, 等. 近55a内蒙古极端降水指数时空变化特征[J]. 干旱区研究, 2019, 36(4): 963-972.
  [Chun Lan, Qin Fuying, Bao Lu, et al. Spatiotemporal variation of extreme precipitation indices in Inner Mongolia in recent 55 years[J]. Arid Zone Research, 2019, 36(4): 963-972.]
[3] 王鹏新, 龚健雅, 李小文, 等. 基于植被指数和土地表面温度的干旱监测模型[J]. 地球科学进展, 2003, 18(4): 527-533.
  [Wang Pengxin, Gong Jianya, Li Xiaowen, et al. Advances in drought monitoring by using remotely sensed norimalized difference vegetation index and land surface temperature products[J]. Advances in Earth Science, 2003, 18(4): 527-533.]
[4] 袁文平, 周广胜. 标准化降水指标与Z指数在我国应用的对比分析[J]. 植物生态学报, 2004, 50(4): 523-529.
  [Yuan Wenping, Zhou Guangsheng. Comparison between standardized precipitation index and Z-index in China[J]. Chinese Journal of Plant Ecology, 2004, 50(4): 523-529.]
[5] 袁文平, 周广胜. 干旱指标的理论分析与研究展望[J]. 地球科学进展, 2004, 19(6): 982-991.
  [Yuan Wenping, Zhou Guangsheng. Theoratical study and research prospect on drought indices[J]. Advances in Earth Science, 2004, 19(6): 985-991.]
[6] Zargar A, Sadiq R, Naser B, et al. A review of drought indices[J]. Environmental Reviews, 2011, 19: 333-349.
[7] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the 8th Conference on Applied Climatology, 1993, 17(22): 179-183.
[8] Gebrehiwot T, Van der Veen A, Maathuis B. Spatial and temporal assessment of drought in the northern highlands of Ethiopia[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 309-321.
[9] Guo H, Bao A, Liu T, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966-2015[J]. Science of the total environment, 2018, 624(1): 1523-1538.
[10] Potop V, Boronean? C, Mo?ny M, et al. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic[J]. Theoretical and Applied Climatology, 2014, 115(1): 563-581.
[11] Santos J F, Pulido-Calvo I, Portela M M. Spatial and temporal variability of droughts in Portugal[J]. Water Resources Research, 2010, 46(3).
[12] Tabari H, Abghari H, Hosseinzadeh Talaee P. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran[J]. Hydrological Processes, 2012, 26(22): 3351-3361.
[13] Zarch M A A, Sivakumar B, Sharma A. Droughts in a warming climate: A global assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI)[J]. Journal of hydrology, 2015, 526(1): 183-195.
[14] 吴英杰, 李玮, 王文君, 等. 基于降水量距平百分率的内蒙古地区干旱特征[J]. 干旱区研究, 2019, 36(4): 943-952.
  [Wu Yingjie, Li Wei, Wang Wenjun, et al. Drought characteristic in Inner Mongolia based on precipitation anomaly percentage[J]. Arid Zone Research, 2019, 36(4): 943-952 ]
[15] 谢岷, 高聚林, 孙继颖, 等. 基于SPEI指数的内蒙古多时空尺度干旱特征分析[J]. 灌溉排水学报, 2022, 41(6): 140-146.
  [Xie Min, Gao Julin, Sun Jiying, et al. Spatiotemporal variation of drought in Inner Mongolia estimated based on the standardized precipitation evapotranspiration index[J]. Journal of Irrigation and Drainage, 2022, 41(6): 140-146.]
[16] 张伟杰, 陈晓俊, 王文君, 等. 基于不同时间尺度标准化降水指数的荒漠草原近56年干旱特征分析——以内蒙古包头达茂草原为例[J]. 安全与环境工程, 2020, 27(5): 32-37.
  [Zhang Weijie, Chen Xiaojun, Wang Wenjun, et al. Drought characteristics of desert steppe in recent 56 years based on standardized precipitation index of different time scales ——A case study of Damao Grassland in Baotou, Inner Mongolia[J]. Safety and Environmental Engineering, 2020, 27(5): 32-37.]
[17] 陈再清, 侯威, 左冬冬, 等. 基于修订Copula 函数的中国干旱特征研究[J]. 干旱气象, 2016, 34(2): 213-222.
  [Chen Zaiqing, Hou Wei, Zuo Dongdong, et al. Research on drought characteristics in China based on the revised Copula function[J]. Journal of Arid Meteorology, 2016, 34(2): 213-222.]
[18] 王晓峰, 张园, 冯晓明, 等. 基于游程理论和Copula函数的干旱特征分析及应用[J]. 农业工程学报, 2017, 33(10): 206-214.
  [Wang Xiaofeng, Zhang Yuan, Feng Xiaoming, et al. Analysis and application of drought characteristics based on run theory and Copula function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 206-214.]
[19] 左冬冬, 侯威, 颜鹏程, 等. 基于游程理论和两变量联合分布的中国西南地区干旱特征研究[J]. 物理学报, 2014, 63(23): 53-64.
  [Zuo Dongdong, Hou Wei, Yan Pengcheng, et al. Research on drought in Southwest China based on the theory of run and two-dimensional joint distribution theory[J]. Acta Physica Sinica, 2014, 63(23): 53-64.]
[20] Luo D, Li L. Spatiotemporal evolution analysis and prediction of drought in Henan Province based on standardized precipitation evapotranspiration index[J]. Water Supply, 2023, 23(1): 410-427.
[21] Morlet D, Peyrin F, Desseigne P, et al. Time-scale analysis of high-resolution signal-averaged surface ECG using wavelet transformation[C]// Proceedings Computers in Cardiology, IEEE, 1991: 393-396.
[22] 王澄海, 李健, 李小兰, 等. 近50 a中国降水变化的准周期性特征及未来的变化趋势[J]. 干旱区研究, 2012, 29(1): 1-10.
  [Wang Chenghai, Li Jian, Li Xiaolan, et al. Analysis on quasi-periodic characteristics of precipitation in recent 50 years and trend in next 20 years in China[J]. Arid Zone Research, 2012, 29(1): 1-10.]
[23] 张得胜, 陈雅芬, 谭森明. 基于小波函数湛江市气象干旱周期分析[J]. 人民珠江, 2020, 41(7): 18-24, 43.
  [Zhang Desheng, Chen Yafen, Tan Senming. Analysis of meteorological drought cycle based on wavelet function in Zhanjiang[J]. Pearl River, 2020, 41(7): 18-24, 43.]
[24] 徐小军, 王友仁, 陈帅. 基于下采样分数阶小波变换的图像融合新方法[J]. 仪器仪表学报, 2014, 35(9): 2061-2069.
  [Xu Xiaojun, Wang Youren, Chen Shuai. Novel image fusion method based on down sampling fractional wavelet transform[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 2061-2069.]
[25] 陈清江, 石小涵, 柴昱洲. 基于小波变换与卷积神经网络的图像去噪算法[J]. 应用光学, 2020, 41(2): 288-295.
  [Chen Qingjiang, Shi Xiaohan, Chai Yuzhou. Image denoising algorithm based on wavelet transform and convolutional neural network[J]. Journal of Applied Optics, 2020, 41(2): 288-295.]
[26] 王晓柱, 钮赛赛, 张凯, 等. 基于小波变换与特征提取的红外弱小目标图像融合[J]. 西北工业大学学报, 2020, 38(4): 723-732.
  [Wang Xiaozhu, Niu Saisai, Zhang Kai, et al. Image fusion of infrared weak-small target based on wavelet transform and feature extraction[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 723-732.]
[27] Mokarram M, Taripanah F. Prediction drought using CA-Markov model and neural networks and its relationship to landforms[J]. Arabian Journal of Geosciences, 2023, 16(5): 342.
[28] 梅晓丹, 毛学刚, 王强, 等. 基于SPEI的黑龙江省小兴安岭地区干旱影响因子分析[J]. 测绘与空间地理信息, 2023, 46(8): 16-20.
  [Mei Xiaodan, Mao Xuegang, Wang Qiang, et al. Analysis of drought influencing factors in Xiaoxing’anling area of Heilongjiang Province based on SPEI[J]. Geomatics & Spatial Information Technology, 2023, 46(8): 16-20.]
文章导航

/