水土资源

1991—2020年新疆中小湖泊面积变化时空特征及趋势分析

  • 马元植 ,
  • 覃小林 ,
  • 凌红波 ,
  • 闫俊杰 ,
  • 张广朋
展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.伊犁师范大学资源与生态研究所,新疆 伊宁 835000
马元植(2000-),男,硕士研究生,主要从事干旱区水文过程研究. E-mail: mayuanzhi21@mails.ucas.ac.cn

收稿日期: 2023-10-25

  修回日期: 2023-12-28

  网络出版日期: 2024-07-03

基金资助

新疆水利科技专项资金项目(XSKJ-2023-08);新疆重点研发项目(2022B03024-1)

Spatio-temporal characteristics and trends of area changes in the small and medium-sized lakes in Xinjiang, China, from 1991 to 2020

  • MA Yuanzhi ,
  • QIN Xiaolin ,
  • LING Hongbo ,
  • YAN Junjie ,
  • ZHANG Guangpeng
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Resources and Ecology, Yili Normal University, Yining 835000, Xinjiang, China

Received date: 2023-10-25

  Revised date: 2023-12-28

  Online published: 2024-07-03

摘要

湖泊作为陆地生态系统中的关键组成部分,是区域经济发展和生态安全的重要保障。本研究分析了1991—2020年间新疆地区74个中小湖泊的面积动态,对不同海拔和地理特征的湖泊进行了综合分析。研究发现,1991—2020年间,新疆湖泊总面积从167.98 km2增加至400.51 km2,尤以山区湖泊面积增长最为显著。月度尺度分析山区湖泊面积变化具有明显的季节性特征。统计分析显示,新疆不同海拔的湖泊对气候变化的响应各异。新疆山区湖泊面积显著扩大,主要受气候变化的影响,尤其是年均温度上升。在平原湖泊区域,人类活动(特别是灌溉)是湖泊面积变化的主要驱动因素,而气候因素的影响则相对较小。

本文引用格式

马元植 , 覃小林 , 凌红波 , 闫俊杰 , 张广朋 . 1991—2020年新疆中小湖泊面积变化时空特征及趋势分析[J]. 干旱区研究, 2024 , 41(6) : 905 -916 . DOI: 10.13866/j.azr.2024.06.01

Abstract

Lakes, as integral components of the terrestrial ecosystems, are vital for regional economic growth and ecological security. Previous studies have primarily focused on typical or large lakes in the Xinjiang region, with comparatively less attention given to smaller lakes. This study analyzed the area dynamics of 74 small and medium-sized lakes in Xinjiang from 1991 to 2020, conducting a comprehensive analysis of the lakes at varying altitudes and with diverse geographical characteristics. The research uncovered that during 1991-2020, the total area of lakes in Xinjiang expanded from 167.98 to 400.51 km², with the most significant growth observed in the mountainous lakes. Monthly scale analysis revealed pronounced seasonal characteristics in the area-changes of these mountainous lakes. Statistical analysis indicated divergent responses of lakes at varying altitudes to climatic changes. The substantial enlargement of lakes in Xinjiang’s mountainous regions is primarily attributed to climate change, particularly the rise in average annual temperatures. In the plains, human activities, especially irrigation, were identified as the primary drivers of lake-area changes, while the impact of climatic factors was relatively minor.

参考文献

[1] 吴雪晴, 张乐乐, 高黎明, 等. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832.
  [Wu Xueqing, Zhang Lele, Gao Liming, et al. Dynamic change and driving force of net primaryproductivity in Qinghai Lake Basin[J]. Arid Zone Research, 2023, 40(11): 1824-1832. ]
[2] 刘永, 郭怀成, 戴永立, 等. 湖泊生态系统健康评价方法研究[J]. 环境科学学报, 2004, 24(4): 723-729.
  [Liu Yong, Guo Huaicheng, Dai Yongli, et al. An assessing approach for lake ecosystem health[J]. Acta Scientiae Circumstantiae, 2004, 24(4): 723-729. ]
[3] 王随继, 程维明, 师庆三. 流域尺度上山水林田湖草生命共同体内在机制分析[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(3): 313-320.
  [Wang Suiji, Cheng Weiming, Shi Qingsan. Analysis on internal mechanisms of the life community of mountain, river, forest, field, lake and grass at watershed scale[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2021, 38(3): 313-320. ]
[4] 王正, 黄粤, 刘铁, 等. 近60 a巴尔喀什湖水量平衡变化及其影响因素[J]. 干旱区研究, 2022, 39(2): 400-409.
  [Wang Zheng, Huang Yue, Liu Tie, et al. Analyzing the water balance of Lake Balkhash and its influencing factors[J]. Arid Zone Research, 2022, 39(2): 400-409. ]
[5] Bai J, Chen X, Li J, et al. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years[J]. Environmental Monitoring and Assessment, 2011, 178: 247-256.
[6] Woolway R I, Kraemer B M, Lenters J D, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1(8): 388-403.
[7] 李菲菲, 周霞, 周玉玺. 西北地区农业干旱脆弱性评估及时空分布特征[J]. 干旱区研究, 2023, 40(4): 663-669.
  [Li Feifei, Zhou Xia, Zhou Yuxi. Vulnerability assessment and spatiotemporal distribution of agricultural drought in Northwest China[J]. Arid Zone Research, 2023, 40(4): 663-669. ]
[8] 吴敬禄, 曾海鳌, 马龙, 等. 新疆主要湖泊水资源及近期变化分析[J]. 第四纪研究, 2012, 32(1): 142-150.
  [Wu Jinglu, Zeng Hai’ao, Ma Long, et al. Recent changes of selected lake water resources in arid Xinjiang[J]. Quaternary Sciences, 2012, 32(1): 142-150. ]
[9] 陈亚宁, 徐长春, 杨余辉, 等. 新疆水文水资源变化及对区域气候变化的响应[J]. 地理学报, 2009, 64(11): 1331-1341.
  [Chen Yaning, Xu Changchun, Yang Yuhui, et al. Hydrology and water resources variation and its responses to regional climate change in Xinjiang[J]. Acta Geographica Sinica, 2009, 64(11): 1331-1341. ]
[10] 胡汝骥, 马虹, 樊自立, 等. 新疆水资源对气候变化的响应[J]. 自然资源学报, 2002, 17(1): 22-27.
  [Hu Ruji, Ma Hong, Fan Zili, et al. Response of water resources to climate change in Xinjiang[J]. Journal of Natural Resources, 2002, 17(1): 22-27. ]
[11] 贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031.
  [Jia Danyang, Xiong Zhenzhen, Gao Yan, et al. Land use/land cover change and influencing factors in the Taitema Lake in the past 30 years[J]. Arid Land Geography, 2021, 44(4): 1022-1031. ]
[12] Guo M, Wu W, Zhou X, et al. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China[J]. Theoretical and Applied Climatology, 2015, 119: 341-351.
[13] Pi X, Luo Q, Feng L, et al. Mapping global lake dynamics reveals the emerging roles of small lakes[J]. Nature Communications, 2022, 13(1): 5777.
[14] Mosquera P V, Hampel H, Vázquez R F, et al. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador[J]. Water Resources Research, 2017, 53(8): 7269-7280.
[15] Smol J P. A planet in flux: How is life on Earth reacting to climate change?[J]. Nature, 2012, 483: S12-S15.
[16] Biggs J, Von Fumetti S, Kelly-Quinn M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers[J]. Hydrobiologia, 2017, 793: 33-39.
[17] 张靓, 魏光辉. 新疆塔里木河流域河湖长制工作实践[J]. 中国水利, 2022(10): 23-24.
  [Zhang Liang, Wei Guanghui. Practice of the river and lake chief system in the Tarim River Basin of Xinjiang[J]. China Water Resources, 2022(10): 23-24. ]
[18] 王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4): 32-40.
  [Wang Wei, Alim Samat, Jilili Abuduwaili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Natural Resources, 2019, 31(4): 32-40. ]
[19] Pekel J-F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422.
[20] Abatzaoglou J T, Dobrowski S Z, Parks S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015[J]. Scientific Data, 2018, 5(1): 1-12.
[21] Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2). https://doi.org/10.1029/2005RG000183.
[22] Xu M, Kang S, Wu H, et al. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia[J]. Atmospheric Research, 2018, 203: 141-163.
[23] Yao J, Yang Q, Mao W, et al. Precipitation trend-Elevation relationship in arid regions of the China[J]. Global and Planetary Change, 2016, 143: 1-9.
[24] Zhuang H, Zhang C, Jin X, et al. A flagship species-based approach to efficient, cost-effective biodiversity conservation in the Qinling Mountains, China[J]. Journal of Environmental Management, 2022, 305: 114388.
[25] Tao S, Fang J, Ma S, et al. Changes in China’s lakes: Climate and human impacts[J]. National Science Review, 2020, 7(1): 132-140.
[26] he R Development Core Team. R: A language and environment for statistical computing. Version 2.15.0 2012.
[27] Li J, Fang H, Bao A, et al. Spatio-temporal analysis of recent changes of lake area and lake water level at high mountains in Central Asia[J]. Resources Science, 2011, 33(10): 1839-1846.
[28] Zheng G, Allen S K, Bao A, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11(5): 411-417.
[29] 曹国亮, 李天辰, 陆垂裕, 等. 干旱区季节性湖泊面积动态变化及蒸发量——以艾丁湖为例[J]. 干旱区研究, 2020, 37(5): 1095-1104.
  [Cao Guoliang, Li Tianchen, Lu Chuiyu, et al. Dynamic variation and evaporation of seasonal lakes in arid areas: A case study for the Aiding Lake[J]. Arid Zone Research, 2020, 37(5): 1095-1104. ]
[30] 努尔兰·哈再孜, 沈永平. 新疆阿勒泰地区的洪水特性[J]. 水文, 2014, 34(4): 74-81.
  [Nuerlan Hazaizi, Shen Yongping. Flood characteristics of Altay Area, Xinjiang[J]. Journal of China Hydrology, 2014, 34(4): 74-81. ]
[31] 李春芳, 白松竹, 刘大锋. 1961—2005年阿勒泰地区5—9月分级降水的气候特征[J]. 沙漠与绿洲气象, 2008, 2(4): 25-27.
  [Li Chunfang, Bai Songzhu, Liu Dafeng. The climatic features of grading precipitation during May-Sep. in Aletai of 1961-2005[J]. Desert and Oasis Meteorology, 2008, 2(4): 25-27. ]
[32] 古丽扎提·哈布肯, 赵景波. 新疆阿勒泰地区近50年来极端气温与降水变化[J]. 干旱区资源与环境, 2011, 25(7): 112-116.
  [Gulzat Habiken, Zhao Jingbo. Changes of extreme temperature and precipitation in Altay Region, Xinjiang in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2011, 25(7): 112-116. ]
[33] Tao S, Fang J, Zhao X, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences, 2015, 112(7): 2281-2286.
[34] 刘哲杰, 白涛, 高凡, 等. 面向生态系统多对象保护与修复的水库优化调度[J]. 干旱区研究, 2022, 39(2): 410-418.
  [Liu Zhejie, Bai Tao, Gao Fan, et al. Optimization of reservoir operation for multi-object protection and ecosystem restoration[J]. Arid Zone Research, 2022, 39(2): 410-418. ]
[35] 迪力夏提·阿卜杜萨拉木, 阿不都克依木·阿布力孜, 周玄德, 等. 干旱区典型绿洲耕地扩张及其人文驱动研究——以新疆且末绿洲为例[J]. 地域研究与开发, 2015, 34(2): 131-136, 176.
  [Dilshat Abdulslam, Abdulkeyum Abliz, Zhou Xuande, et al. Study on the expansion of cultivated land and its human driving forces in typical arid area oasis: A case study of Charchan Oasis in Xinjiang[J]. Areal Research and Development, 2015, 34(2): 131-136, 176. ]
[36] 邓铭江. 金山南面大河流(下)——额尔齐斯河生态调度和生态修复研究与实践[J]. 中国水利, 2023(17): 67-72.
  [Deng Mingjiang. The great river to the south of Jinshan (Part 2) - research and practice on ecological regulation and restoration of the Irtysh River[J]. China Water Resources, 2023(17): 67-72. ]
[37] Wang W, Jiao A, Shan Q, et al. Expansion of typical lakes in Xinjiang under the combined effects of climate change and human activities[J]. Frontiers in Environmental Science, 2022, 10: 1015543.
[38] 李玉焦, 陈亚宁, 张齐飞, 等. 1960—2018年博斯腾湖水位变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(1): 48-58.
  [Li Yujiao, Chen Yaning, Zhang Qifei, et al. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018[J]. Arid Zone Research, 2021, 38(1): 48-58. ]
[39] 黄智华, 周怀东, 薛滨, 等. 人类活动对乌伦古湖环境演化的影响[J]. 人民黄河, 2011, 33(5): 60-62.
  [Huang Zhihua, Zhou Huaidong, Xue Bin, et al. The impact of human activities on the environmental evolution of Ulungur Lake[J]. Yellow River, 2011, 33(5): 60-62. ]
文章导航

/