农业生态

基于多光谱影像的阿拉尔垦区棉田土壤盐分反演

  • 洪国军 ,
  • 谢俊博 ,
  • 张灵 ,
  • 范振岐 ,
  • 喻彩丽 ,
  • 付仙兵 ,
  • 李旭
展开
  • 1.江西科技学院江西省区域发展研究院,江西 南昌 330200
    2.塔里木大学信息工程学院,新疆 阿拉尔 843300
    3.塔里木大学塔里木绿洲农业教育部重点实验室,新疆 阿拉尔 843300
    4.塔里木大学水利与建筑工程学院,新疆 阿拉尔 843300
    5.汕尾职业技术学院海洋学院,广东 汕尾 516600
洪国军(1995-),男,硕士研究生,主要从事空间大数据管理与智慧农业研究. E-mail: hgj950603@163.com
李旭. E-mail: lixu2866@126.com

收稿日期: 2023-10-26

  修回日期: 2023-12-27

  网络出版日期: 2024-05-29

基金资助

国家自然基金地区基金(61662064);国家自然基金地区基金(42061046)

Monitoring soil salinization of cotton fields in the Aral Reclamation Area using multispectral imaging

  • HONG Guojun ,
  • XIE Junbo ,
  • ZHANG Ling ,
  • FAN Zhenqi ,
  • YU Caili ,
  • FU Xianbing ,
  • LI Xu
Expand
  • 1. Jiangxi University of Science and Technology Jiangxi Provincial Institute of Regional Development, Nanchang 330200, Jiangxi, China
    2. School of Information Engineering, Tarim University, Alar 843300, Xinjiang, China
    3. Key Laboratory of Tarim Oasis Agricultural Ministry of Education, Tarim University, Alar 843300, Xinjiang, China
    4. College of Water Resources and Architectural Engineering, Tarim University, Alar 843300, Xinjiang, China
    5. College of Ocean of Shanwei Institute of Technology, Shanwei 516600, Guangdong, China

Received date: 2023-10-26

  Revised date: 2023-12-27

  Online published: 2024-05-29

摘要

针对新疆土壤盐分信息获取困难,无法快速、准确的大范围评估土壤盐渍化情况,本研究以新疆阿拉尔垦区的棉田为研究对象,利用Sentinel-2 SR和Landsat-9 OLI的多光谱遥感影像数据,采用穷举特征组合和交叉验证方法,从20个光谱指数和组合光谱指数构建的高维数据集中筛选出最优特征子集,并比较四种机器学习模型(即XGBoost、随机森林、深度神经网络和K-近邻)在不同特征组合下的土壤盐渍化反演精度,同时分析Sentinel-2 SR和Landsat-9 OLI遥感影像在土壤盐渍化反演中的精度差异。研究结果表明:(1) 基于XGBoost算法构建的模型能够实现棉田盐渍化高精度预测,不同特征组合的R2均高于0.74,MSE均低于0.04,MAPE低于0.13。(2) 在特征组合1条件下,Sentinel-2 SR(S3+GBNDVI)与Landsat-9 OLI(SI+NDVI)遥感影像使用XGBoost算法均获得了最高预测精度。(3) Sentinel-2 SR影像数据在棉田盐渍化预测中的精度(R2=0.73~0.88)优于Landsat-9 OLI影像数据。本研究实现了新疆阿拉尔垦区棉田土壤盐渍化精准监测,为垦区棉田土壤盐渍化治理和防治提供有效的技术参考。

本文引用格式

洪国军 , 谢俊博 , 张灵 , 范振岐 , 喻彩丽 , 付仙兵 , 李旭 . 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024 , 41(5) : 894 -904 . DOI: 10.13866/j.azr.2024.05.16

Abstract

Given the difficulties in the field measurement of soil salinization in Xinjiang and the difficulty in quickly and broadly evaluating the potential hazards of soil salinization, this study considers cotton fields in the Aral Reclamation Area of Xinjiang as the research object, and uses multispectral remote sensing image data from Sentinel-2 SR and Landsat-9 OLI to construct a high-dimensional data set by comprehensively integrating 20 spectral indices and combining spectral indices. The optimal feature subset is screened using the method of exhaustive feature combination and cross-validation, and the inversion accuracy of soil salinization is compared for four machine learning algorithms (i.e., XGBoost, random forest, deep neural network, and K-nearest neighbor) under different feature combinations. Simultaneously, the difference in accuracy between Sentinel-2 SR and Landsat-9 OLI remote sensing images in soil salinization inversion is analyzed. The results show that: (1) The model constructed based on XGBoost algorithm can achieve high-precision prediction of cotton field salinization, with R2 higher than 0.74, MSE lower than 0.04, and MAPE lower than 0.13. (2) Under the condition of feature combination 1, Sentinel-2 SR (S3+GBNDVI) and Landsat-9 OLI (SI+NDVI) remote sensing images achieved the highest prediction accuracy using XGBoost algorithm. (3) Sentinel-2 SR image data in cotton field salinization prediction (R2=0.73-0.88) is better than that of Landsat-9 OLI image data. This study realizes the precise monitoring of soil salinization in cotton fields in the Aral Reclamation Area of Xinjiang, which should provide an effective and timely technical reference for soil salinization control and prevention in cotton fields in reclamation areas.

参考文献

[1] 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1): 18-23.
  [Huang Jing, Kong Yali, Xu Qingshan, et al. Progress for characteristics and amelioration measures of saline soil[J]. Soils, 2022, 54(1): 18-23.]
[2] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27.
  [Yang Jingsong, Yao Rongjiang, Wang Xiangping, et al. Research on salt-affected soils in China: History, Status Quo and Prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27.]
[3] Xiao Y, Zhao G, Li T, et al. Soil salinization of cultivated land in Shandong Province, China-Dynamics during the past 40 years[J]. Land Degradation & Development, 2019, 30(4): 426-436.
[4] Li J, Pu L, Han M, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960.
[5] Li P, Wu J, Qian H. Regulation of secondary soil salinization in semi-arid regions: A simulation research in the Nanshantaizi area along the Silk Road, Northwest China[J]. Environmental Earth Sciences, 2016, 75: 1-12.
[6] Stavi I, Thevs N, Priori S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures[J]. Frontiers in Environmental Science, 2021, 330: 712831.
[7] Fan J, Xu Y, Ge H, et al. Vegetation growth variation in relation to topography in Horqin Sandy Land[J]. Ecological Indicators, 2020, 113: 106215.
[8] 杜瑞麒, 陈俊英, 张智韬, 等. Sentinel-2 多光谱卫星遥感反演植被覆盖下的土壤盐分变化[J]. 农业工程学报, 2021, 37(17): 107-115.
  [Du Ruiqi, Chen Junying, Zhang Zhitao, et al. Inversing soil salinity under vegetation cover using Sentinel-2 multispectral satellite remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 107-115.]
[9] Abuelgasim A, Ammad R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data[J]. Remote Sensing Applications: Society and Environment, 2018, 13: 415-425.
[10] Wu W, Zucca C, Muhaimeed A S, et al. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq[J]. Land Degradation & Development, 2018, 29(11): 4005-4014.
[11] Wang J, Peng J, Li H, et al. soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in Arid Areas, China[J]. Remote Sensing, 2021, 13: 305.
[12] Wang S, Chen Y, Wang M, et al. Performance comparison of machine learning algorithms for estimating the soil salinity of salt-affected soil using field spectral data[J]. Remote Sensing, 2018, 11(22): 2605.
[13] 王遵亲, 祝寿泉, 尤文瑞, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993.
  [Wang Zunqin, Zhu Shouquan, You Wenrui, et al. Saline Soil in China[M]. Beijing: Science Press, 1993.]
[14] Staff U S S, Diagnosis and improvement of saline and alkali soils[J]. Agriculture Handbook, 1954, 60: 83-100.
[15] Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2020, 164: 152-170.
[16] 陈俊英, 王新涛, 张智韬, 等. 基于无人机-卫星遥感升尺度的土壤盐渍化监测方法[J]. 农业机械学报, 2019, 50(12):161-169.
  [Chen Junying, Wang Xintao, Zhang Zhitao, et al. Soil salinization monitoring method based on UAV-Satellite remote sensing scale-up[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 161-169.]
[17] 刘旭辉, 白云岗, 柴仲平, 等. 基于多光谱遥感的典型绿洲棉田春季土壤盐分反演及验证[J]. 干旱区地理, 2022, 45(4): 1165-1175.
  [Liu Xuhui, Bai Yungang, Chai Zhongping, et al. Inversion and validation of soil salinity based on multispectral remote sensing in typical oasis cotton field in spring[J]. Arid Land Geography, 2022, 45(4): 1165-1175.]
[18] 张术伟, 常春艳, 王卓然, 等. 基于卫星遥感的黄三角濒海区土壤水盐及其耦合关系时空分析[J]. 农业资源与环境学报, 2023, 40(4): 792-804.
  [Zhang Shuwei, Chang Chunyan, Wang Zhuoran, et al. Spatio-temporal analysis of soil water and salt and their coupling relationship in the Yellow River Delta coastal area based on satellite remote sensing[J]. Journal of Agricultural Resources and Environment, 2023, 40(4): 792-804.]
[19] 冯娟, 丁建丽, 杨爱霞, 等. 干旱区土壤盐渍化信息遥感建模[J]. 干旱地区农业研究, 2018, 36(1): 266-273.
  [Feng Juan, Ding Jianli, Yang Aixia, et al. Remote sensing modeling of soil salinization information in arid areas[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 266-273.]
[20] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
  [Huang Xiaoyu, Wang Xuemei, Kawuqiati Baishan, et al, Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.]
[21] 姚金玺, 肖成志, 张志, 等. 基于GEE多源遥感数据的干旱区植被地物类型提取[J]. 干旱区研究, 2024, 41(1): 157-168.
  [Yao Jinxi, Xiao Chengzhi, Zhang Zhi, et al. Vegetation feature type extraction in arid regions based on GEE multi-source remote sensing data[J]. Arid Zone Research, 2024, 41(1): 157-168.]
[22] Guo B, Lu M, Fan Y, et al. A novel remote sensing monitoring index of salinization based on three-dimensional feature space model and its application in the Yellow River Delta of China[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 95-116.
[23] 代云豪, 管瑶, 张钦凯, 等. 阿拉尔垦区土壤盐渍化遥感监测及时空特征分析[J]. 干旱区地理, 2022, 45(4): 1176-1185.
  [Dai Yunhao, Guan Yao, Zhang Qinkai, et al, Remote sensing monitoring and temporal and spatial characteristics of soil salinization in Aral Reclamation Area[J]. Arid Land Geography, 2022, 45(4): 1176-1185.]
[24] 马浩文, 王永芳, 郭恩亮. 基于GEE的翁牛特旗土地沙漠化遥感监测[J]. 干旱区研究, 2023, 40(3): 504-516.
  [Ma Haowen, Wang Yongfang, Guo Enliang. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE[J]. Arid Land Geography, 2023, 40(3): 504-516.]
[25] 谢俊博, 王兴鹏, 何帅, 等. 基于光谱指数建模的沙井子灌区土壤盐分反演[J]. 干旱区地理, [2024-02-05]. http://kns.cnki.net/kcms/detail/65.1103.X.20240202.1806.002.html.
  [Xie Junbo, Wang Xingpeng, He Shuai, et al. Soil salinity inversion in the Shajingzi irrigation scheme based on spectral index modeling[J]. Arid Land Geography, [2024-02-05]. http://kns.cnki.net/kcms/detail/65.1103.X.20240202.1806.002.html.]
[26] LMa S, He B, Xie B, et al. Investigation of the spatial and temporal variation of soil salinity using Google Earth Engine: A case study at Werigan-Kuqa Oasis, West China[J]. Scientific Reports, 2023, 13(1): 2754.
[27] Hong G, Bai T, Wang X, et al. Extraction and analysis of soil salinization information in an Alar Reclamation Area based on spectral index modeling[J]. Applied Sciences, 2023, 13(6): 3440.
[28] Moltó E. Fusion of different image sources for improved monitoring of agricultural plots[J]. Sensors, 2022, 22(17): 6642.
[29] 朱大运, 熊康宁, 肖华, 等. 基于植被指数的GF-1与Landsat-OLI石漠化识别能力对比评价[J]. 自然资源学报, 2016, 31(11): 1949-1957.
  [Zhu Dayun, Xiong Kangning, Xiao Hua, et al, Comparison of rocky desertification detection ability of GF-1 and Landsat-OLI based on vegetation index[J]. Journal of Natural Resources, 2016, 31(11): 1949-1957.]
[30] Lobell D B, Lesch S M, Corwin D L, et al. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI[J]. Journal of Environmental Quality, 2010, 39(1): 35-41.
[31] 李小雨, 贾科利, 魏慧敏, 等. 基于随机森林算法的土壤含盐量预测[J]. 干旱区研究, 2023, 40(8): 1258-1267.
  [Li Xiaoyu, Jia Keli, Wei Huimin, et al, Prediction of soil salt content based on the random forest algorithm[J]. Arid Land Geography, 2023, 40(8): 1258-1267.]
[32] 李霞, 刘廷玺, 段利民, 等. 半干旱区沙丘、草甸作物系数模拟及蒸散发估算[J]. 干旱区研究, 2020, 37(5):1246-1255.
  [Li Xia, Liu Tingxi, Duan Limin, et al, Crop coefficient simulation and evapotranspiration estimation of dune and meadow in a semiarid area[J]. 2020, 37(5): 1246-1255.]
[33] Gao B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
[34] Zhao X, Zhao Z, Zhao F, et al. An estimation of the leaf nitrogen content of apple tree canopies based on multispectral unmanned aerial vehicle imagery and machine learning methods[J]. Agronomy, 2024, 14(3): 552.
[35] Naimi S, Ayoubi S, Zeraatpisheh M, et al. Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach[J]. Remote Sensing, 2021, 13(23): 4825.
[36] Ta?an M, Ta?an S, Demir Y. Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods[J]. Environmental Science and Pollution Research, 2023, 30(2): 2866-2890.
文章导航

/