生态与环境

塔里木河流域碳储量的气候影响机制及地形分异下的归因

  • 程晓瑜 ,
  • 吕洁华
展开
  • 东北林业大学经济管理学院,黑龙江 哈尔滨 150040
程晓瑜(1989-),女,博士研究生,主要从事林业经济管理研究. E-mail: cxy_simple0916@163.com
吕洁华. E-mail: lvjiehua2004@126.com

收稿日期: 2024-01-17

  修回日期: 2024-02-06

  网络出版日期: 2024-05-29

基金资助

国家社会科学基金项目(21GBL166)

Mechanism of climate influence on carbon storage in the Tarim River Basin and attribution under topographic differentiation

  • CHENG Xiaoyu ,
  • LYU Jiehua
Expand
  • College of Economics and Management, Northeast Forestry University, Harbin 150040, Helongjiang, China

Received date: 2024-01-17

  Revised date: 2024-02-06

  Online published: 2024-05-29

摘要

本研究基于InVEST模型,估算塔里木河流域长时间序列的碳储量,刻画并分析其时空变化特征,采用趋势分析、相关系数及波段集统计等方法,探讨气候变化与塔里木河流域碳储量整体的时空关联性,借助偏最小二乘法定量剖析塔里木河流域不同地形下碳储量的变化归因。结果表明:(1) 2002—2020年塔里木河流域总体碳储量水平较低,整体呈“中部低,周边高”的马蹄形分布特征,整体情况呈向好趋势发展。(2) 塔里木河流域碳储量与年均气温、潜在蒸散发量以及年均降水量均存在相反空间分布多于同向空间分布的特征,空间分异明显。(3) 全局尺度下气候因素对碳储量的影响作用从大到小依次为潜在蒸散发量>年均气温>年均降水量。(4) 潜在蒸散发量是塔里木河流域Ⅰ、Ⅲ、Ⅳ级地形位最具解释意义的变量,平均气温和平均降水量是Ⅱ、Ⅴ级地形位最具解释意义的变量。

本文引用格式

程晓瑜 , 吕洁华 . 塔里木河流域碳储量的气候影响机制及地形分异下的归因[J]. 干旱区研究, 2024 , 41(5) : 865 -875 . DOI: 10.13866/j.azr.2024.05.14

Abstract

Using the InVEST model, the carbon storage in the Tarim River Basin was estimated over a long period, and the spatial--temporal variation characteristic were described using trend analysis, correlation coefficients, and band set statistics to explore the overall spatial-temporal correlation between climate change and carbon storage in the study area; in addition, quantitative analysis of was performed the attribution of carbon storage in different topographic locations with the help of partial least square method. The results showed that: (1) From 2002 to 2020, the overall carbon storage level in the Tarim River Basin was low, following a horseshoe-shaped distribution characteristic (“low in the middle and high in the periphery”), and overall followed an increasing trend. (2) Carbon storage and average annual temperature, potential evapotranspiration, and average annual precipitation in the study area had the characteristics of opposite spatial distribution rather than the same spatial distribution, and the spatial differentiation was obvious. (3) The overall influence of climate factors on carbon storage followed the order: potential evapotranspiration>average annual temperature>average annual precipitation. (4) The potential evapotranspiration is the most significant variable for the levels I, III, and IV topography in the Tarim River Basin, whereas the average temperature and average precipitation are the most significant variables for the levels II and V topography in the Tarim River Basin.

参考文献

[1] 潘家华. “双碳”目标再解析: 概念、挑战和机遇[J/OL]. 北京工业大学学报(社会科学版), [2024-04-15]. http://kns.cnki.net/kcms/detail/11.4558.G.20231206.1634.002.
  [Pan Jiahua. “Double Carbon” goals revisited: concepts, challenges and opportunities[J/OL]. Journal of Beijing University of Technology (Social Sciences Edition), [2024-04-15]. http://kns.cnki.net/kcms/detail/11.4558.G.20231206.1634.002.]
[2] 杜之利, 苏彤, 葛佳敏, 等. 碳中和背景下的森林碳汇及其空间溢出效应[J]. 经济研究, 2021, 56(12): 187-202.
  [Du Zhili, Su Tong, Ge Jiamin, et al. Towards the carbon neutrality: The role of carbon sink and its spatial spillover effect[J]. Economic Research Journal, 2021, 56(12): 187-202.]
[3] 孙一帆, 徐梦菲, 汪霞. 基于Invest-plus模型的郑州市碳储量时空演变及空间自相关分析[J]. 水土保持通报, 2023, 43(5): 374-384.
  [Sun Yifan, Xu Mengfei, Wang Xia. Spatial-temporal evolution of carbon storage and spatial autocorrelation analysis in Zhengzhou City based on Invest-plus model[J]. Bulletin of Soil and Water Conservation, 2023, 43(5): 374-384.]
[4] 赵方圆, 王琼芳, 张华堂, 等. 基于Invest模型的甘肃省祁连山林区乔木林碳储量时空变化研究[J]. 西北林学院学报, 2023, 38(4): 233-240.
  [Zhao Fangyuan, Wang Qiongfang, Zhang Huatang, et al. Temporal and spatial variations of arbor forest carbon storage of Gansu Province based on Invest model in the forest area of the Qilian Mountains[J]. Journal of Northwest Forestry University, 2023, 38(4): 233-240.]
[5] 屈颂杰, 韩玲, 黄馨, 等. 未来不同情景下陕西省碳储量的时空演变分析[J/OL]. 环境科学, [2023-12-06]. doi: 10.13227/j.hjkx.202310028.
  [Qu Songjie, Han Ling, Huang Xin, et al. Analysis of the spatiotemporal evolution of carbon reserves in Shaanxi Province under different scenarios in the future[J/OL]. Environmental Science, [2023-12-06]. doi:10.13227/j.hjkx.202310028.]
[6] 吴则禹, 刘星根, 曾金凤. 基于Invest-plus模型的东江源流域碳储量时空演变与预测[J]. 环境科学学报, 2024, 44(3): 419-430.
  [Wu Zeyu, Liu Xinggen, Zeng Jinfeng. Spatio-temporal change and prediction of carbon storage in Dongjiang River source watershed based on Invest-plus model[J]. Acta Scientiae Circumstantiae, 2024, 44(3): 419-430.]
[7] 陈宁, 辛存林, 唐道斌, 等. 中国西北地区多情景土地利用优化与碳储量评估[J]. 环境科学, 2023, 44(8): 4655-4665.
  [Chen Ning, Xin Cunlin, Tang Daobin, et al. Multi-scenario land use optimization and carbon storage assessment in Northwest China[J]. Environmental Science, 2023, 44(8): 4655-4665.]
[8] 张泽民, 刘博, 关潇. 黄河流域上游煤矿区土地利用类型变化及其对固碳服务的影响[J]. 环境科学研究, 2024, 37(1): 190-201.
  [Zhang Zemin, Liu Bo, Guan Xiao. Analysis of effect of land use changes on carbon sequestration services in coal mining areas in upper Yellow River Basin[J]. Research of Environmental Sciences, 2024, 37(1): 190-201.]
[9] 李妙宇, 上官周平, 邓蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素[J]. 生态学报, 2021, 41(17): 6786-6799.
  [Li Miaoyu, Shangguan Zhouping, Deng Lei. Spatial distribution of carbon storages in the terrestrial ecosystems and its influencing factors on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(17): 6786-6799.]
[10] 张玉, 张道军. 地形位指数模型改进及其在植被覆盖评价中的应用[J]. 地理学报, 2022, 77(11): 2757-2772.
  [Zhang Yu, Zhang Daojun. Improvement of terrain niche index model and its application vegetation cover evaluation[J]. Acta Geographica Sinica, 2022, 77(11): 2757-2772.]
[11] 李正, 赵林. 西北干旱区山水林田湖草沙系统治理研究实践—以塔里木河重要源流区为例[J]. 中国国土资源经济, 2022, 35(12): 13-18, 63.
  [Li Zheng, Zhao Lin. Research and practice on systematic management of mountains, rivers, forests, fields, lakes, grasslands, and sands in the Northwest Arid Zone—Taking the Tarim River important headwaters area as an example[J]. Natural Resource Economics of China, 2022, 35(12): 13-18, 63.]
[12] 岳胜如, 王伦澈, 曹茜, 等. 塔里木河流域植被动态及潜在因素驱动机制[J/OL]. 地球科学, [2023-08-02]. http://kns.cnki.net/kcms/detail/42.1874.p.20230801.1700.002.html.
  [Yue Shengru, Wang Lunche, Cao Qian, et al. Vegetation dynamics and potential factors driving mechanisms in the Tarim River Basin[J/OL]. Earth Science, [2023-08-02]. http://kns.cnki.net/kcms/detail/42.1874.p.20230801.1700.002.html.]
[13] 郭继凯, 吴秀芹, 董贵华, 等. 基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J]. 干旱区研究, 2017, 34(3): 621-629.
  [Guo Jikai, Wu Xiuqin, Dong Guihua, et al. Vegetation coverage change and relative effects of driving factors based on MODIS/NDVI in the Tarim River Basin[J]. Arid Zone Research, 2017, 34(3): 621-629.]
[14] 冉启云. 塔里木河流域地表水体时空变化特征探究及分析[D]. 重庆: 重庆交通大学, 2017.
  [Ran Qiyun. Spatio-temporal Change Characteristics and Analysis of Surface Water Resources in The Tarim River Basin[D]. Chongqing: Chongqing Jiaotong University, 2017.]
[15] 宋怡, 马明国. 基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系[J]. 遥感学报, 2008, 22(3): 499-505.
  [Song Yi, Ma Mingguo. Variation of GIMMS AVHRR NDVI and its relationship with climate in Chinese arid and cold regions[J]. National Remote Sensing Bulletin, 2008, 22(3): 499-505.]
[16] 邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018, 33(3): 425-438.
  [Deng Chenhui, Bai Hongying, Gao Shan. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018, 33(3): 425-438.]
[17] 陈泓瑾, 刘琳, 张正勇, 等. 天山北坡人类活动强度与地表温度的时空关联性[J]. 地理学报, 2022, 77(5): 1244-1259.
  [Chen Hongjin, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal correlation between human activity intensity and surface temperature on the north slope of Tianshan Mountain[J]. Acta Geographica Sinica, 2022, 77(5): 1244-1259.]
[18] 喻红, 曾辉, 江子瀛. 快速城市化地区景观组分在地形梯度上的分布特征研究[J]. 地理科学, 2001, 21(1): 64-69.
  [Yu Hong, Zeng Hui, Jiang Ziying. Study on distribution characteristics of landscape elements along the terrain gradient[J]. Scientia Geographica Sinica, 2001, 21(1): 64-69.]
[19] 侯美亭, 胡伟, 乔海龙, 等. 偏最小二乘(PLS)回归方法在中国东部植被变化归因研究中的应用[J]. 自然资源学报, 2015, 30(3): 409-422.
  [Hou Meiting, Hu Wei, Qiao Hailong, et al. Application of Partial Least Squares (PLS) regression method in attribution of vegetation change in eastern China[J]. Journal of Natural Resources, 2015, 30(3): 409-422.]
[20] 王惠文. 偏最小二乘回归方法及其应用[M]. 北京: 国防工业出版社 1999.
  [Wang Huiwen. Partial Least Squares Regression Method and Application[M]. Beijing: National Defense Industry Press, 1999.]
[21] Perezenciso M, Tenenhaus M. Prediction of clinical outcome with microarray data: A partial least squares discriminant analysis (PLS-DA) approach[J]. Human Genetics, 2003, 112(5): 581-592.
[22] Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis[M]. New Jersey: Prentice Hall, 2002.
[23] Yang J E, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Environmental Earth System Science Data, 2021, 13: 3907-3925.
[24] 刘洋, 张军, 周冬梅, 等. 基于Invest模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10): 4052-4065.
  [Liu Yang, Zhang Jun, Zhou Dongmei, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on Invest model[J]. Acta Ecologica Sinica, 2021, 41(10): 4052-4065.]
[25] 方精云, 郭兆迪, 朴世龙, 等. 1981-2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 12(6): 804-812.
  [Fang Jingjun, Guo Zhaodi, Pu Shilong, et al. Estimation of terrestrial vegetation carbon sink in China from 1981 to 2000[J]. Scientia Sinica (Terrae), 2007, 12(6): 804-812.]
[26] 程积民, 程杰, 杨晓梅, 等. 黄土高原草地植被碳密度的空间分布特征[J]. 生态学报, 2012, 32(1): 226-237.
  [Cheng Jimin, Cheng Jie, Yang Xiaomei, et al. Spatial distribution of carbon density in grassland vegetation of the Loess Plateau of China[J]. Acta Ecologica Sinica, 2012, 32(1): 226-237.]
[27] Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limit moisture supply[J]. Nature, 2010, 467(7318): 951-954.
[28] 韩敏, 徐长春, 隆云霞, 等. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 2022, 42(3): 335-344.
  [Han Min, Xu Changchun, Long Yunxia, et al. Stimulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 335-344.]
[29] 周文强, 韩宇, 王金龙, 等. 洞庭湖流域生态系统碳储量的时空异质性及驱动力分析[J/OL]. 中国环境科学, [2023-11-28]. https://doi.org/10.19674/j.cnki.issn1000-6923.20231127.038.
  [Zhou Wenqiang, Han Yu, Wang Jinlong, et al. Spatiotemporal heterogeneity and driving forces of ecosystem carbon storage in the Dongting Lake Basin[J/OL]. China Environmental Science, [2023-11-28]. https://doi.org/10.19674/j.cnki.issn1000-6923.20231127.038.]
[30] 王兴丹, 刘普幸, 耿梦蝶, 等. 土地利用时空变化的关键驱动因子及其影响趋势——以武威市为例[J]. 中国环境科学, 2023, 43(12): 6583-6591.
  [Wang Xingdan, Liu Puxing, Geng Mengdie, et al. The key driving factors of land use patio-temporal change and its influence trend——A case study of Wuwei[J]. China Environmental Science, 2023, 43(12): 6583-6591.]
[31] 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345.
  [Zhang Xiaomin, Zhang Dongmei, Zhang Wei. Effects of human activities on carbon storage in the Irtysh River Basin[J]. Arid Zone Research, 2023, 40(8): 1333-1345.]
文章导航

/