生态与环境

塔克拉玛干沙漠南缘新月形沙丘移动特征

  • 刘鑫 ,
  • 高鑫
展开
  • 1.中国科学院新疆生态与地理研究所,国家荒漠-绿洲生态建设工程技术研究中心,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
刘鑫(1997-),男,硕士研究生,主要从事沙漠化防治工程研究. E-mail: liuxin214@mails.ucas.ac.cn
高鑫. E-mail: gaoxin@ms.xjb.ac.cn

收稿日期: 2023-10-18

  修回日期: 2024-01-26

  网络出版日期: 2024-04-26

基金资助

第三次新疆综合科学考察项目—塔里木河流域干旱与风沙灾害调查和风险评估(2021xjkk0300);新疆天山英才——科技创新领军人才项目(2022TSYCLJ0002)

Migration velocity of barchan dunes at the southern margin of the Taklamakan Desert

  • LIU Xin ,
  • GAO Xin
Expand
  • 1. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-10-18

  Revised date: 2024-01-26

  Online published: 2024-04-26

摘要

新月形沙丘的移动特征可以反映区域内风沙运移和地貌演化过程,对于科学开展风沙灾害防治具有重要意义。本文利用卫星遥感影像与气象再分析数据,研究了塔克拉玛干沙漠南缘6个新月形沙丘群2012—2022年的形态变化与移动特征。结果表明:(1) 研究区域内新月形沙丘平均移动速率为6.86 m·a-1,移动方向与对应区域内盛行风方向基本一致;(2) 不同区域内新月形沙丘形态参数之间的关联性呈现显著差异;(3) 沙丘高度、下垫面植被覆盖、年均降雨量以及地表温度与沙丘移动速率呈负相关关系,分区拟合结果有差异;(4) 且末西南区域的年平均输沙通量约为77120.5 kg·m-1。研究结果反映了新月形沙丘移动规律的复杂性,不同地理环境因子的影响程度或存在显著差异,需结合实地情况进行具体分析。同时,在沙丘演化过程中,形态参数的动态变化反映了沙丘迁移的内在机理,进一步为新月形沙丘的发育机理提供了实证数据,也为沙丘危害防治和土地规划提供了参考依据。

本文引用格式

刘鑫 , 高鑫 . 塔克拉玛干沙漠南缘新月形沙丘移动特征[J]. 干旱区研究, 2024 , 41(4) : 661 -673 . DOI: 10.13866/j.azr.2024.04.12

Abstract

The movement characteristics of barchan dunes in the southern edge of the Taklamakan Desert reveal wind-sand transport features and geomorphological evolution processes, which are of great significance for the systematic prevention of sand and dust disasters in the region. This study used satellite remote sensing images and meteorological reanalysis data to analyze the morphological changes and moving features of six barchan dune groups along the southern edge of the Taklamakan Desert from 2012 to 2022. The results showed that (1) the average moving speed of barchan dunes within the study area was 6.86 m·a-1, and the moving direction was consistent with the prevailing wind direction in the corresponding region; (2) the association between the morphological parameters of barchan dunes within the area was complex; (3) the movement of barchan dunes is jointly influenced by the wind energy environment, topography, climatic conditions, and vegetation coverage, of which the dune height, underlying surface vegetation coverage, average annual rainfall, and surface temperature were negatively correlated with dune moving speed, and these negative correlations were significantly optimized after regional classification; (4) the average sand transport rate in the study area was 77120.5 kg·m-1·a-1, and it was influenced by the underlying surface conditions and the wind energy environment within the region, which provides an important reference for optimizing sand prevention and control measures. The study results reflect the complexity of the moving pattern of the barchan dunes, and the degree of impact varied with the presence of different geographical environmental factors, which necessitates field-specific analysis. Moreover, the dynamic changes in morphological parameters during the evolution of dunes reveal the internal mechanism of dune migration, providing substantial data for studying the evolution characteristics of dunes and a scientific basis for wind prevention and solidifying work and land planning.

参考文献

[1] Breed C S, Grow T. Morphology and Distribution of Dunes in Sand Seas Observed by Remote Sensing[M]. US: Geological Survey Professional Paper, 1979: 253-274.
[2] Lancaster N. Geomorphology of Desert Dunes[M]. New York: Routledge, 1995: 5-6.
[3] Costas Vázquez, Iria. Climate Archive Dune[D]. Hamburg, Universit?t Hamburg Hamburg, 2013.
[4] 张正偲, 张焱, 马鹏飞, 等. 雅鲁藏布江中游风沙区典型下垫面空气动力学参数研究[J]. 干旱区研究, 2022, 39(4): 997-1005.
  [Zhang Zhengcai, Zhang Yan, Ma Pengfei, et al. Aerodynamic parameters of typical underlying surfaces in an aeolian region in the middle reaches of the Yarlung Zangbo River[J]. Arid Zone Research, 2022, 39(4): 997-1005.]
[5] 何晨晨, 吴盈盈, 田永胜, 等. 民勤绿洲外围新月形沙丘宽高比与移动速率变化特征[J]. 干旱区研究, 2023, 40(2): 280-291.
  [He Chenchen, Wu Yingying, Tian Yongsheng, et al. Variation characteristics of width-height ratio and migration speed of barchans at the margin of Minqin oasis[J]. Arid Zone Research, 2023, 40(2): 280-291.]
[6] Wang X, Yan P, Dong M, et al. The effect of gradient and shape on the formation process of climbing dunes in a wind-tunnel experiment[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(11): 58-68.
[7] Jackson D W, Bourke M C, Smyth T A. The dune effect on sand-transporting winds on Mars[J]. Nature Communications, 2015, 6(1): 87-96.
[8] Jarvis P A, Narteau C, Rozier O, et al. The probabilistic nature of dune collisions in 2D[J]. Earth Surface Dynamics, 2023, 11: 3-15.
[9] 朱震达, 吴正, 李钜章. 塔克拉玛千沙漠风沙地貌研究[J]. 科学通报, 1966, 13(11): 620-624.
  [Zhu Zhenda, Wu Zheng, Li Juzhang, et al. Study on the aeolian geomorphology of the Taklimakan Desert[J]. Chinese Science Bulletin, 1966, 13(11): 620-624.]
[10] Wilson I G. Ergs[J]. Sedimentary Geology, 1972, 7(1): 77-106.
[11] Pye K, Tsoar H. Aeolian Sand and Sand Dunes[M]. London: Unwin Hyman, 1990: 141-173.
[12] 王萌, 郜学敏, 李继彦, 等. 柴达木盆地西南缘山前沙丘区沙丘地貌形态特征[J]. 中国沙漠, 2021, 41(5): 166-174.
  [Wang Meng, Gao Xuemin, Li Jiyan, et al. Morphological characteristics of dunes in the piedmont of southwestern Qaidam Basin, China[J]. Journal of Desert Research, 2021, 41(5): 166-174.]
[13] 李建军, 焦菊英, 曹雪, 等. 柴达木盆地沙丘移动的空间分异及对形态参数的响应[J]. 农业工程学报, 2021, 37(7): 309-314.
  [Li Jianjun, Jiao Juying, Cao Xue, et al. Spatial regionalization and response to morphological parameters of dune migration in the Qaidam Basin of China[J]. Journal of Agricultural Engineering, 2021, 37(7): 309-314.]
[14] 马奔腾, 程建军, 雷加强, 等. 南疆塔中-38团沙漠公路沿线风沙输移规律与防沙体系研究[J]. 干旱区研究, 2022, 39(5): 1663-1672.
  [Ma Benteng, Cheng Jianjun, Lei Jiaqiang, et al. Transport law and control system of wind-blown sand along the desert highway of South Xinjiang Tazhong-38th Corp[J]. Arid Zone Research, 2022, 39(5): 1663-1672.]
[15] 崔珂军, 李生宇, 范敬龙, 等. 蒙古国中部草原地区风蚀沙漠化的风沙活动特征——以乔伊尔市为例[J]. 干旱区地理, 2022, 45(3): 792-801.
  [Cui Kejun, Li Shengyu, Fan Jinglong, et al. Aeolian sand activity characteristics of wind erosion and desertification in the grassland area of central Mongolia: A case of Choir City[J]. Arid Land Geography, 2022, 45(3): 792-801.]
[16] 李志星, 李志忠, 靳建辉, 等. 2008—2018年河北昌黎海岸输沙势时空变化与沙丘形态演变[J]. 中国沙漠, 2020, 40(3): 94-105.
  [Li Zhixing, Li Zhizhong, Jin Jianhui, et al. Spatiotemporal changes in sediment transport potential and dune morphological evolution on the Hebei Changli Coast from 2008 to 2018[J]. Journal of Desert Research, 2020, 40(3): 94-105.]
[17] Pang Y, Wu B, Gao J, et al. Provenance of aeolian sand in the Kumtag Desert, northwestern China, inferred from geochemical data[J]. Arabian Journal of Geosciences, 2022, 15(16): 14-15.
[18] 宋张亮, 高志海, 孙斌, 等. 无人机载激光雷达(LiDAR)沙丘特征线信息自动提取技术研究[J]. 干旱区资源与环境, 2019, 33(12): 165-171.
  [Song Zhangliang, Gao Zhihai, Sun Bin, et al. Study on automatic extraction technology of dune feature line information by UAV-borne LiDAR[J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 165-171.]
[19] Wu W, Zhang D, Tian L, et al. Morphological change and migration of revegetated dunes in the Ketu Sandy Land of the Qinghai Lake, China[J]. Journal of Arid Land, 2023, 15(7): 827-841.
[20] 李爱敏, 韩致文. 新月形沙丘形态参数与移动速度的关系[J]. 中国沙漠, 2020, 40(1): 29-40.
  [Li Aimin, Han Zhiwen. Relationship between moving speed and morphological parameters of barchan dunes[J]. Journal of Desert Research, 2020, 40(1): 29-40.]
[21] 贾光普. 阿拉善戈壁地区新月形沙丘形态特征与动态演变过程研究[D]. 呼和浩特: 内蒙古农业大学, 2022.
  [Jia Guangpu. Study on the Morphological Characteristics and Dynamic Evolution Process of Crescent-Shaped dunes in Alxa Gobi Area[D]. Hohhot: Inner Mongolia Agricultural University, 2022.]
[22] Jia G P, Yang G, He X Y, et al. Quantitative study on morphological characteristics of barchan dunes in Yamarak Desert, China[J]. Frontiers in Earth Science, 2022, 10: 861-891.
[23] Malin M C, Bell III J F, Cantor B A, et al. Context camera investigation on board the Mars Reconnaissance Orbiter[J]. Journal of Geophysical Research: Planets, 2007, 112(E5): 77-93.
[24] Rubanenko L, Lap?tre M G A, Ewing R C, et al. A distinct ripple-formation regime on Mars revealed by the morphometrics of barchan dunes[J]. Nature Communications, 2022, 13(1): 7156.
[25] Liu J, Qin X, Ren X, et al. Martian dunes indicative of wind regime shift in line with end of ice age[J]. Nature, 2023, 5: 1-7.
[26] 王宁波, 李生宇, 王海峰, 等. 塔克拉玛干沙漠腹地垄间地上覆沙丘形态的空间变化特征及其成因[J]. 干旱区地理, 2014, 37(1): 89-96.
  [Wang Ningbo, Li Shengyu, Wang Haifeng, et al. Spatial variation and formation mechanism of dune morphology in the dominant wind direction on interdune corridors of complex ridges in central Taklimakan Desert[J]. Arid Land Geography, 2014, 37(1): 89-96.]
[27] 凌裕泉. 塔克拉玛干沙漠的气候特征及其变化趋势[J]. 中国沙漠, 1990, 10(2): 9-19.
  [Ling Yuquan. Climatic characteristics and changing trends of the Taklimakan Desert[J]. Journal of Desert Research, 1990, 10(2): 9-19.]
[28] Gao X, Narteau C, Gadal C. Migration of reversing dunes against the sand flow path as a singular expression of the speed-up effect[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(5): e2020JF005913.
[29] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146: 1999-2049.
[30] Courrech du Pont S, Narteau C, Gao X. Two modes for dune orientation[J]. Geology, 2014, 42(9): 743-746.
[31] 杨兴华, 马明杰, 周成龙, 等. 不同起沙阈值判定方案在塔克拉玛干沙漠的适用性对比研究[J]. 干旱区研究, 2022, 39(4): 1006-1016.
  [Yang Xinghua, Ma Mingjie, Zhou Chenglong, et al. Comparative study of the applicability of emission threshold determining method in the Taklimakan Desert[J]. Arid Zone Research, 2022, 39(4): 1006-1016.]
[32] Ungar J E, Haff P K. Steady state saltation in air[J]. Sedimentology, 1987, 34(2): 289-299.
[33] Tsoar H. Sand dunes mobility and stability in relation to climate[J]. Physica A: Statistical Mechanics and its Applications, 2005, 357(1): 50-6.
[34] Fryberger S G. Dune Forms and Wind Regime[M]. Washington USA:U.S.Government Printing Office: Mckee E D.A Study of Global Sand Sea, 1979.
[35] Sun W, Gao X. Geomorphology of sand dunes in the Taklamakan Desert based on ERA5 reanalysis data[J]. Journal of Arid Environments, 2022, 207: 104848.
[36] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
  [Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospect[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
[37] 张正偲, 董治宝, 赵爱国, 等. 库姆塔格沙漠风沙活动特征[J]. 干旱区地理, 2010, 33(6): 939-946.
  [Zhang Zhengcai, Dong Zhibao, Zhao Aiguo, et al. Characteristics of blown sand activity in the Kumtagh Desert[J]. Arid Land Geography, 2010, 33(6): 939-946.]
[38] Baas A C, Delobel L A. Desert dunes transformed by end-of-century changes in wind climate[J]. Nature Climate Change, 2022, 12(11): 999-1006.
[39] Long J T, Sharp R P. Barchan-dune movement in imperial valley, California[J]. Geological Society of America Bulletin, 1964, 75(2): 149-156.
[40] Norris R M. Barchan dunes of imperial valley, California[J]. The Journal of Geology, 1966, 74(3): 292-306.
[41] Gadal C, Delorme P, Narteau C, et al. Local wind regime induced by giant linear dunes: Comparison of ERA5-land reanalysis with surface measurements[J]. Boundary-Layer Meteorology, 2022, 185(3): 309-332.
[42] Ould Ahmedou D, Ould Mahfoudh A, Dupont P, et al. Barchan dune mobility in Mauritania related to dune and interdune sand fluxes[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): 204-112.
[43] Haff P K, Presti D E. Barchan dunes of the Salton Sea region, California[J]. Desert Aeolian Processes, 1995: 153-177.
[44] 赵景峰, 李崇舜, 何清, 等. 塔克拉玛干沙漠腹地塔中一井地区起沙风分析和输沙通量的估算[J]. 干旱区地理, 1995, 18(3): 39-47.
  [Zhao Jingfeng, Li Chongshun, He Qing, et al. Analysis of sand-blowing winds and estimation of sand transport quantity in the Ta Zhong No. 1 well area in the interior of the Taklimakan Desert[J]. Arid Land Geography, 1995, 18(3): 39-47.]
[45] Gunn A, Casasanta G, Di Liberto L, et al. What sets aeolian dune height?[J]. Nature communications, 2022, 13(1): 2401.
[46] Zhang H, Li C, Zhang J, et al. Numerical simulation analysis of the formation and morphological evolution of asymmetric crescentic dunes[J]. Sustainability, 2022, 14(14): 8966.
文章导航

/