系统发育和植物功能性状对新疆木本植物开花物候变化的影响
收稿日期: 2023-07-27
修回日期: 2023-10-02
网络出版日期: 2024-04-01
基金资助
国家自然科学基金项目(31860111);国家自然科学基金项目(41871031)
Phylogeny and functional traits affect the changes in flowering phenology across woody species in Xinjiang
Received date: 2023-07-27
Revised date: 2023-10-02
Online published: 2024-04-01
为揭示系统发育和植物功能性状对新疆木本植物开花物候的影响,以新疆乌鲁木齐、伊宁和喀什三地典型植物园或公园的木本植物为研究对象,利用系统发育信号值和系统发育广义最小二乘模型(Phylogenetic Generalized Least Squares, PGLS),探究开花物候分布特征、谱系保守性以及功能性状的贡献率。结果表明:(1) 新疆木本植物开花期集中在3月31日至4月20日,持续时间为(13.03±0.38) d。乔木、肉质果、彩色花和风媒植物分别比灌木、非肉质果、非彩色花和虫媒植物的开花早。(2) 亲缘关系越近的物种开花物候特征越相似,系统发育信号值Pagel’s λ为0.67~0.74。(3) 果实类型、花色和传粉方式与开花物候最相关,解释度为17.4%~31.6%。本研究证明系统发育和植物功能性状均能影响新疆木本植物开花物候,研究结果对阐明干旱区生物多样性维持机制和虫植关系具有重要意义。
廖珂 , 孙楠 , 李赛强 , 孙喜庆 , 罗旭 , 杨晓东 . 系统发育和植物功能性状对新疆木本植物开花物候变化的影响[J]. 干旱区研究, 2024 , 41(3) : 480 -489 . DOI: 10.13866/j.azr.2024.03.12
This study aimed to determine whether systematic development and functional traits affect the changes in flowering phenology across woody plants in the Xinjiang Uygur Autonomous Region. Thus, in this study, a botanical garden or park in Urumqi, Yining, and Kashgar was selected as the research object, and then the flowering phenological traits of 120 woody species as well as plant functional traits were observed and collected. The systematic development signals and a generalized least squares model of systematic development were used to study phenological conservation and the impact of plant functional traits on flowering phenology. Results show that the flowering phenology of woody plants was mainly concentrated from March 31 to April 20, with a flowering duration of (13.03±0.38) d. Trees, fleshy fruit, colored flowers, and wind-borne plants have earlier flowering phenology than shrubs, non-fleshy fruit, non-colored flowers, and insect-borne plants, respectively. (2) The phylogenetic signals (Pagel’s λ) of three flowering phenological traits ranged from 0.67 to 0.74, indicating that phylogenetic development constrained the flowering phenology of woody species. (3) Fruit type, flower color, and pollination mode were the main functional traits driving changes in flowering phenology, with a contribution rate of 17.4%-31.6%. The results of this study indicate that systematic development and functional traits affect the changes in flowering phenology across woody plants, which has deepened the phenological theory and is of great importance for elucidating the mechanism of biodiversity maintenance and insect-plant relationships in arid areas.
Key words: flowering phenology; phylogeny; plant functional traits; flower color; fruit type; woody plant
[1] | 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 中国科学, 1973(2): 168-189. |
[Zhu Kezhen. A preliminary study on climate change in China during the past 5000 years[J]. Scientia Sinica, 1973(2): 168-189.] | |
[2] | Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants[J]. Science, 2002, 296(5573): 1689-1691. |
[3] | Bock A, Sparks T H, Estrella N, et al. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey[J]. Global Change Biology, 2014, 20(11): 3508-3519. |
[4] | Wang Y, Yang X D, Ali A, et al. Flowering phenology shifts in response to functional traits, growth form, and phylogeny of woody species in a desert area[J]. Frontiers in Plant Science, 2020, 11: 536. |
[5] | Swenson N G. The assembly of tropical tree communities the advances and shortcomings of phylogenetic and functional trait analyses[J]. Ecography, 2013, 36(3): 264-276. |
[6] | Rosbakh S, Hartig F, Sandanov D V, et al. Siberian plants shift their phenology in response to climate change[J]. Global Change Biology, 2021, 27(18): 4435-4448. |
[7] | Gill A L, Gallinat A S, Sanders-DeMott R, et al. Changes in autumn senescence in Northern Hemisphere deciduous trees: A meta-analysis of autumn phenology studies[J]. Annals of Botany, 2015, 116(6): 875-888. |
[8] | 李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[Li Rui, Shan Lishan, Xie Tingting, et al. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435.] | |
[9] | 焦亮, 关雪, 刘雪蕊, 等. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应[J]. 干旱区研究, 2020, 37(1): 202-211. |
[Jiao Liang, Guan Xue, Liu Xuerui, et al. Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland[J]. Arid Zone Research, 2020, 37(1): 202-211.] | |
[10] | 郑景云, 葛全胜, 郝志新. 气候增暖对我国近40年植物物候变化的影响[J]. 科学通报, 2002, 47(20): 1582-1587. |
[Zheng Jingyun, Ge Quansheng, Hao Zhixin. The effect of climate change on plant phenology in late 40 years in China[J]. Science Bulletin, 2002, 47(20): 1582-1587.] | |
[11] | Sun S C, Frelich L E. Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species[J]. Journal of Ecology, 2011, 99(4): 991-1000. |
[12] | Du Y, Mao L, Queenborough S A, et al. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China[J]. Global Ecology and Biogeography, 2015, 24(8): 928-938. |
[13] | Davies T J, Wolkovich E M, Kraft N J B, et al. Phylogenetic conservatism in plant phenology[J]. Journal of Ecology, 2013, 101(6): 1520-1530. |
[14] | 李兰平. 青藏高原东部高寒草甸植物开花物候研究[D]. 兰州: 兰州大学, 2016. |
[Li Lanping. The Study of Flowering Phenology of Alpine Plants on Eastern Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2016.] | |
[15] | 胡小丽, 张杨家豪, 米湘成, 等. 浙江古田山亚热带常绿阔叶林开花物候: 气候因素、系统发育关系和功能性状的影响[J]. 生物多样性, 2015, 23(5): 601-609. |
[Hu Xiaoli, Zhang Yangjiahao, Mi Xiangcheng, et al. Influence of climate, phylogeny, and functional traits on flowering phenology in a subtropical evergreen broad-leaved forest, East China[J]. Biodiversity Science, 2015, 23(5): 601-609.] | |
[16] | Chang-Yang C H, Lu C L, Sun I F, et al. Flowering and fruiting patterns in a subtropical rain forest, Taiwan[J]. Biotropica, 2013, 45(2): 165-174. |
[17] | CaraDonna P J, Inouye D W. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community[J]. Ecology, 2015, 96(2): 355-361. |
[18] | Boyle W A, Bronstein J L. Phenology of tropical understory trees: Patterns and correlates[J]. Revista de Biologia Tropical, 2012, 60(4): 1415-1429. |
[19] | Kattge J, Sandel B. TRY plant trait database-enhanced coverage and open access[J]. Global Change Biology, 2020, 26(9): 5343. |
[20] | Panchen Z A, Primack R B, Nordt B, et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy[J]. New Phytologist, 2014, 203(4): 1208-1219. |
[21] | Konig P, Tautenhahn S, Cornelissen J H C, et al. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits[J]. Global Ecology and Biogeography, 2018, 27(3): 310-321. |
[22] | Navarro T, Oualidi J E, Taleb M S. Relationship between seed size and related functional traits in North Saharan Acacia woodlands[J]. Plant Ecology and Evolution, 2018, 151(1): 87-95. |
[23] | Arceo-Gómez G, Schroeder A, Albor C, et al. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide[J]. Scientific Reports, 2019, 9(1): 8086. |
[24] | 邹嘉琪, 何秉宇, 陈静, 等. 伊宁市木本植物开花物候特征及其与环境因子关系研究[J]. 安徽农业科学, 2021, 49(16): 75-81. |
[Zou Jiaqi, He Bingyu, Chen Jing, et al. Study on the flowering phenology of woody plants and its relationship with environmental factors in Yining City[J]. Journal of Anhui Agricultural Sciences, 2021, 49(16): 75-81.] | |
[25] | 杨晓东, 姬盼盼, 热依沙, 等. 31种木本植物开花物候与系统发育的关系[J]. 生态学报, 2018, 38(3): 1003-1015. |
[Yang Xiaodong, Ji Panpan, Re Yisha, et al. Relationship between flowering phenology and phylogeny in 31 woody plants of Urumqi, Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(3): 1003-1015.] | |
[26] | 梁颖怡, 庞学群, 王艇. 果实类型多样性的形成机制和进化[J]. 植物科学学报, 2017, 35(6): 912-924. |
[Liang Yingyi, Pang Xuequn, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924.] | |
[27] | 祖元刚, 毛子军, 袁晓颖, 等. 白桦的开花时间及生殖构件的数量与树龄和树冠层次的关系[J]. 生态学报, 2000, 20(4): 673-677. |
[Zu Yuangang, Mao Zijun, Yuan Xiaoying, et al. The blooming and production of reproductive modules in relation to tree age and their position within crowns in Betula platyphylla[J]. Acta Ecologica Sinica, 2000, 20(4): 673-677.] | |
[28] | 宛敏渭, 刘秀珍. 中国物候观测方法[M]. 北京: 科学出版社, 1979. |
[Wan Minwei, Liu Xiuzhen. Phenological Observation Methods in China[M]. Beijing: Science Press, 1979.] | |
[29] | Medina-Alonso M G, Navas J F, Cabezas J M, et al. Differences on flowering phenology under Mediterranean and subtropical environments for two representative olive cultivars[J]. Environmental and Experimental Botany, 2020, 180(45): 104239. |
[30] | 中国科学院中国植物志编委会. 中国植物志: 第七卷[M]. 北京: 科学出版社, 1978. |
[Editorial Committee of the Flora of China, Chinese Academy of Sciences. Flora of China:Vol. 7[M]. Beijing: Science Press, 1978.] | |
[31] | Webb C O, Donoghue M J. Phylomatic: Tree assembly for applied phylogenetics[J]. Molecular Ecology Notes, 2005, 5(1): 181-183. |
[32] | Wikstr?m N, Savolainen V, Chase M W. Evolution of the angiosperms: Calibrating the family tree[J]. Proceedings of the Royal Society B-Biological Sciences, 2001, 268(1482): 2211-2220. |
[33] | Webb C O, Ackerly D D, Kembel S W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution[J]. Bioinformatics, 2008, 24(18): 2098-2100. |
[34] | Blomberg S P, Garland T, Ives A R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile[J]. Evolution, 2003, 57(4): 717-745. |
[35] | Münkemüller T, Lavergne S, Bzeznik B, et al. How to measure and test phylogenetic signal[J]. Methods in Ecology and Evolution, 2012, 3(4): 743-756. |
[36] | 王诗韵, 吕光辉, 蒋腊梅, 等. 不同尺度下艾比湖典型植物群落功能多样性和系统发育多样性研究[J]. 生态环境学报, 2020, 29(5): 889-900. |
[Wang Shiyun, Lv Guanghui, Jiang Lamei, et al. Multi-scale analysis on functional diversity and phylogenetic diversity of typical plant community in Ebinur Lake[J]. Ecology and Environmental Sciences, 2020, 29(5): 889-900.] | |
[37] | Revell L J. Phytools: An R package for phylogenetic comparative biology (and other things)[J]. Methods in Ecology and Evolution, 2012, 3(2): 217-223. |
[38] | Orme D, Freckleton R, Thomas G, et al. The caper package: Comparative analysis of phylogenetics and evolution in R[J]. R package version, 2013, 5(2): 1-36. |
[39] | Nally R M, Walsh C J. Hierarchical partitioning public-domain software[J]. Biodiversity and Conservation, 2004, 13(3): 659-660. |
[40] | Heberling J M, MacKenzie C M, Fridley J D, et al. Phenological mismatch with trees reduces wildflower carbon budgets[J]. Ecology Letters, 2019, 22(4): 616-623. |
[41] | 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503-7513. |
[Hou Manman, Li Xiaoyu, Wang Junwei, et al. Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Acta Ecologica Sinica, 2017, 37(22): 7503-7513.] | |
[42] | 卢孟孟, 黄小翠, 慈秀芹, 等. 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构[J]. 生物多样性, 2014, 22(4): 438-448. |
[Lu Mengmeng, Huang Xiaocui, Ci Xiuqin, et al. Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of Southwest China[J]. Biodiversity Science, 2014, 22(4): 438-448.] | |
[43] | Wang T, Ottle C, Peng S S, et al. The influence of local spring temperature variance on temperature sensitivity of spring phenology[J]. Global Change Biology, 2014, 20(5): 1473-1480. |
[44] | 董翰林, 王文婷, 谢云, 等. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884. |
[Dong Hanlin, Wang Wenting, Xie Yun, et al. Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023, 40(12): 1875-1884.] | |
[45] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[Tao Zexing, Ge Quansheng, Wang Huanjiong. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963 to 2018[J]. Acta Geographica Sinica, 2020, 75(7): 1451-1464.] | |
[46] | Richardson A D, Keenan T F, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169(50): 156-173. |
[47] | Dyer A, Whitney H, Arnold S, et al. Bees associate warmth with floral colour[J]. Nature, 2006, 442(7102): 525. |
[48] | Dowding P. Wind pollination mechanisms and aerobiology[J]. International Review of Cytology, 1987, 107(8): 421-437. |
[49] | Du Y J, Mao L F, Queenborough S A, et al. Macro-scale variation and environmental predictors of flowering and fruiting phenology in the Chinese angiosperm flora[J]. Journal of Biogeography, 2020, 47(11): 2303-2314. |
[50] | Ting S, Hartley S, Burns K C. Global patterns in fruiting seasons[J]. Global Ecology and Biogeography, 2008, 17(5): 648-657. |
[51] | 热依拉穆·麦麦提吐尔逊, 哈里布努尔, 艾沙江·阿不都沙拉木. 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023, 40(7): 1152-1163. |
[Reyilamu Maimaituerxun, Halibunuer, Aysajan Abdusalam. Seed germination and dormancy traits of fruit heteromorphism species Lycium ruthenicum in an elevational heterogeneity environment[J]. Arid Zone Research, 2023, 40(7): 1152-1163.] |
/
〈 | 〉 |