水土资源

干旱砾漠区不同微地貌单元土壤性状及真菌群落变化特征

  • 杜华栋 ,
  • 刘研 ,
  • 毕银丽 ,
  • 车旭曦 ,
  • 拜梦童
展开
  • 1.西安科技大学地质与环境学院,陕西 西安 710054
    2.西安科技大学西部矿山生态环境修复研究院,陕西 西安 710054
    3.中交第二公路工程局第三工程有限公司,陕西 西安 710000
杜华栋(1982-),男,副教授,研究方向为矿山生态修复及生态效益评价. E-mail: dddhhhddd@126.com
毕银丽. E-mail: ylbi88@126.com

收稿日期: 2023-10-11

  修回日期: 2023-11-29

  网络出版日期: 2024-04-01

基金资助

国家重点研发计划西部干旱区煤能源基地区域生态保护与资源综合利用技术课题三(2022YFF1303303)

Characteristics of soil properties and fungal community changes in different microgeomorphic units in an arid gravel desert area

  • DU Huadong ,
  • LIU Yan ,
  • BI Yinli ,
  • CHE Xuxi ,
  • BAI Mengtong
Expand
  • 1. College of Geology & Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2. Western Mine Ecological Environment Rehabilitation Research Institute, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    3. China Communications Construction Company Second Highway Engineering Bureau Third Engineering Co., Ltd., Xi’an 710000, Shaanxi, China

Received date: 2023-10-11

  Revised date: 2023-11-29

  Online published: 2024-04-01

摘要

探明干旱砾漠区不同微地貌单元土壤性状、真菌群落组成特征及其变化驱动因素,对于该区土壤真菌群落构建机制的理论研究和针对性生态损伤修复策略制定的实践指导具有重要意义。本文首先对比了干旱砾漠区4种微地貌单元(风蚀残丘、砾漠戈壁、河谷和风沙地)土壤理化性质、真菌α多样性及群落组成的变化特征,再结合不同微地貌单元植物群落特性和微气象因子测定,探究了各微地貌单元影响土壤真菌群落的主要生态因子。结果表明:(1) 干旱砾漠区土壤均为砂质土壤,其中风沙地砂粒含量最大且黏粒含量最小,而河谷土壤粒径组成则相反;河谷和砾漠戈壁之间土壤容重和有机质含量无显著差异但显著高于其他两种微地貌单元;河谷土壤可溶性盐含量显著低于其他微地貌单元21.4%,但土壤含水量显著高出39.3%;速效养分中除砾漠戈壁的速效氮与速效钾、风蚀残丘的速效磷含量显著较低外,其他微地貌单元速效养分并未表现出显著性差异。(2) 土壤真菌α多样性中,Shannon-Wiener指数、Pieloue指数和Simpson指数均表现为在风沙地显著降低而其他微地貌单元差异不明显,但Chao1多样性指数没有显著差异;真菌群落组成在门水平上,不同微地貌单元都以子囊菌门和担子菌门为优势菌门,其中子囊菌门在砾漠戈壁和风蚀残丘优势度最大,担子菌门在河谷占比最大;在属水平上,风蚀残丘的新凸轮孢菌属、暗茎草属,砾漠戈壁的新凸轮孢菌属、光黑壳,河谷的曲霉属、链格孢属,风沙地的金银花属、新凸轮孢菌属分别为各地貌单元土壤真菌群落优势属。(3) 土壤含水量、有机质、速效氮、可溶性盐是影响干旱砾漠区不同微地貌单元土壤真菌群落结构变化的共同关键因子,风沙地的土壤机械组成、风蚀残丘的地表温度、光辐射强度、砾漠戈壁的地表风速和河谷的地表植被生物量分别为各自地貌单元影响土壤真菌群落的差异化生态因子。

本文引用格式

杜华栋 , 刘研 , 毕银丽 , 车旭曦 , 拜梦童 . 干旱砾漠区不同微地貌单元土壤性状及真菌群落变化特征[J]. 干旱区研究, 2024 , 41(3) : 421 -431 . DOI: 10.13866/j.azr.2024.03.07

Abstract

Exploring the characteristics of soil properties, fungal communities, and their driving factors in different microgeomorphic units in arid gravel desert areas is important for the study of fungal community construction mechanisms and practical guidance for targeted ecological damage restoration strategies. In this paper, the changes in soil physicochemical properties, fungal α diversity, and community composition of four microgeomorphic units (wind erosion residual hills, gravel desert Gobi, river valley, and wind sand land) in an arid gravel desert area were compared. The main factors affecting soil fungal communities in different microgeomorphological units in gravel desert areas were explored by combining plant characteristics and micrometeorological factors. Results showed that the soil in the arid gravel desert area was dominated by sandy soil, and wind sand land had the largest sandy content and the smallest clay content, which was contrary to the soil mechanical composition of the river valley. No significant difference in soil bulk density and organic matter content was found between the river valley and the gravel desert Gobi, but their soil bulk density and organic matter content were significantly higher than those of the other two microgeomorphic units. However, the soluble salt content of the river valley was 21.4%, which was significantly lower than that in other microgeomorphic units, but the soil water content was significantly higher by 39.3%. Except for the contents of available N, available K and available P in the gravel desert Gobi and wind erosion residual hills, no significant difference in the available nutrients was found in other microgeomorphological units. In addition, the α diversity of soil fungi, Shannon-Wiener index, Pieloue index, and Simpson index all showed a significant decrease in wind sand land, whereas no significant difference in other microgeomorphological units was found. However, the Chao1 index has no significant difference. At the phylum level, the dominant fungi phyla were Ascomycota and Basidiomycota in different microgeomorphic units. Ascomycota has the largest dominance in the gravel desert Gobi and wind erosion residual hills, and Basidiomycota has the largest proportion in the river valley. At the genera level, Neocamarosporium and Subramaniu in the Wind erosion residual hill, Preussia and Neocamarosporium in the gravel desert Gobi, Aspergillus and Alternaria in the river valley, and Trichophaeopsis and Neocamarosporium in the wind sand land were the dominant genera of soil fungal communities in each geomorphic unit. Soil water content, organic matter, available N, and soluble salts were the common key factors affecting the changes in soil fungal community structure in different microgeomorphic units in an arid gravel desert area. Furthermore, the soil mechanical composition in wind sand land, surface temperature and light radiation intensity of wind erosion residual hills, surface wind speed of gravel desert Gobi, and surface vegetation biomass of river valley were the differentiated ecological factors affecting soil fungal community in each geomorphic unit.

参考文献

[1] 陈曦, 姜逢清, 王亚俊, 等. 亚洲中部干旱区生态地理格局研究[J]. 干旱区研究, 2013, 30(3): 385-390.
  [Chen Xi, Jiang Fengqing, Wang Yajun, et al. Characteristics of the eco-geographical pattern in arid land of central Asia[J]. Arid Zone Research, 2013, 30(3): 385-390.]
[2] 胡汝骥, 樊自立, 王亚俊, 等. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报, 2002, 17(3): 321-326.
  [Hu Ruji, Fan Zili, Wang Yajun, et al. Groundwater resources and their characteristics in arid lands of Northwest China[J]. Journal of Natural Resources, 2002, 17(3): 321-326.]
[3] 张丙乾. 新疆土壤盐碱化及其防治[J]. 干旱区研究, 1993, 10(1): 55-61.
  [Zhang Bingqian. Soil salinization and its prevention in Xinjiang[J]. Arid Zone Research, 1993, 10(1): 55-61.]
[4] 赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121.
  [Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121.]
[5] Lv W, Qiu Y, Xie Z, et al. Gravel mulching effects on soil physicochemical properties and microbial community composition in the Loess Plateau, northwestern China[J]. European Journal of Soil Biology, 2019, 94(10): 103-115.
[6] 郭泽呈, 魏伟, 石培基, 等. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965.
  [Guo Zecheng, Wei Wei, Shi Peiji, et al. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China[J]. Acta Geographica Sinca, 2020, 75(9): 1948-1965.]
[7] Yinglan A, Wang G, Liu T, et al. Spatial variation of correlations between vertical soil water and evapotranspiration and their controlling factors in a semi-arid region[J]. Journal of Hydrology, 2019, 574(14): 53-63.
[8] Wang Y, Zhao Y, Yan L, et al. Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas[J]. Agricultural Water Management, 2022, 271(12): 107758.
[9] Yan M, Zuo H, Wang H, et al. Snow resisting capacity of Caragana microphylla and Achnatherum splendens in a typical steppe region of Inner Mongolia, China[J]. Journal of Arid Land, 2020, 12(2): 294-302.
[10] Kjoeller A, Struwe S. Microfungi in ecosystems: Fungal occurrence and activity in litter and soil[J]. Oikos, 1982(6), 391-422.
[11] Li P, Li W, Dumbrell A J, et al. Spatial variation in soil fungal communities across paddy fields in subtropical China[J]. Msystems, 2020, 5(1): 704-719.
[12] Yang Y, Wu P. Soil bacterial community varies but fungal community stabilizes along five vertical climate zones[J]. Catena, 2020, 195(5): 104841.
[13] 徐鹏, 荣晓莹, 刘朝红, 等. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响[J]. 生物多样性, 2022, 30(3): 70-83.
  [Xu Peng, Rong Xiaoying, Liu Chaohong, et al. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert[J]. Biodiversity Science, 2022, 30(3): 70-83.]
[14] 郭晓雯, 杜思垚, 王芳霞, 等. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923.
  [Guo Xiaowen, Du Siyao, Wang Fangxia, et al. Effects of long-term saline water irrigation on soil bacterial and fungi community structure in cotton field[J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2909-2923.]
[15] 郭蓉, 吴旭东, 王占军, 等. 荒漠草原土壤细菌和真菌群落对降水变化的响应[J]. 应用生态学报, 2023, 34(6): 1500-1508.
  [Guo Rong, Wu Xudong, Wang Zhanjun, et al. Response of soil bacteria and fungal communities to altered precipitation in desert steppe[J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1500-1508.]
[16] Glassman S I, Wang I J, Bruns T D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales[J]. Molecular Ecology, 2017, 26(24): 6960-6973.
[17] 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428.
  [Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428.]
[18] Manzoni S, Katul G, Fay PA, et al. Modeling the vegetation-atmosphere carbon dioxide and water vapor interactions along a controlled CO2 gradient[J]. Ecol Model, 2011, 222(3): 653-665.]
[19] 中国科学院新疆综合考察队, 地理研究所, 北京师范大学地理系. 新疆地貌[M]. 北京: 科学出版社, 1978.
  [Xinjiang Comprehensive Investigation Team of China Academy of Sciences, Institute of Geography, Department of Geography, Beijing Normal University. Xinjiang Geomorphology[M]. Beijing: Science Press, 1978.]
[20] 尚浩博. 资源环境常规分析方法[M]. 杨凌: 西北农林科技大学出版社, 2010.
  [Shang Haobo. Conventional Analysis Methods of Resources and Environment[M]. Yangling: Northwest A & F University Press, 2010.]
[21] 何文寿, 刘阳春, 何进宇. 宁夏不同类型盐渍化土壤水溶盐含量与其电导率的关系[J]. 干旱地区农业研究, 2010, 28(1): 111-116.
  [He Wenshou, Liu Yangchun, He Jinyu. Relationships between soluble salt content and electrical conductivity of different types of salt-affected soils in Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 111-116.]
[22] Rodrigo A, Avila A. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests[J]. Journal of Hydrology, 2001, 243(3-4): 216-227.
[23] Wang Y, Jiao P, Guo W, et al. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese Fir (Cunninghamia lanceolate) plantations in subtropical China[J]. Front Microbiol, 2021, 12(14): 777-862.
[24] 龚子同, 陈鸿昭, 杨帆, 等. 中亚干旱区土壤地球化学和环境[J]. 干旱区研究, 2017, 34(1): 1-9.
  [Gong Zitong, Chen Hongzhao, Yang Fan, et al. Pedogechemistry and environment of aridisol regions in Central Asia[J]. Arid Zone Research, 2017, 34(1): 1-9.]
[25] 程维明, 柴慧霞, 周成虎, 等. 新疆地貌空间分布格局分析[J]. 地理研究, 2009, 28(5): 1157-1169.
  [Cheng Weiming, Chai Huixia, Zhou Chenghu, et al. The spatial distribution patterns of digital geomorphology in Xinjiang[J]. Geographical Research, 2009, 28(5): 1157-1169.]
[26] 刘茜雅, 王海兵, 左合君, 等. 苏宏图戈壁沉积物分形空间变异性及其成因[J]. 干旱区地理, 2021, 44(1): 168-177.
  [Liu Qianya, Wang Haibing, Zuo Hejun, et al. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi[J]. Arid Land Geography, 2021, 44(1): 168-177.]
[27] Shi X, Wang H, Song J, et al. Impact of saline soil improvement measures on salt content in the abandonment-reclamation process[J]. Soil and Tillage Research, 2021, 208: 104867.
[28] 王世明, 范敬龙, 赵英, 等. 咸水灌溉条件下塔里木河下游沙漠土壤水盐运移数值模拟[J]. 干旱区地理, 2021, 44(4): 1104-1113.
  [Wang Shiming, Fan Jinglong, Zhao Ying, et al. Numerical simulation of water and salt migration in desert of the lower reaches of Tarim River under saline water irrigation[J]. Arid Land Geography, 2021, 44(4): 1104-1113.]
[29] 王雪梅, 柴仲平, 武红旗. 典型干旱荒漠绿洲区耕层土壤养分空间变异[J]. 水土保持通报, 2016, 36(1): 51-56.
  [Wang Xuemei, Chai Zhongping, Wu Hongqi. Spatial variation of soil nutrients in arable layer in typical arid desert oasis area[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 51-56.]
[30] 周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反演及影响因素研究[J]. 土壤学报, 2018, 55(2): 313-324.
  [Zhou Qianqian, Ding Jianli, Tang Mengying, et al. Inversion of soil organic matter content in oasis typical of arid areas and its influences factors[J]. Acta Pedologica Sinica, 2018, 55(2): 313-324.]
[31] 罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453.
  [Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediments in Gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453.]
[32] 陈新邦, 唐光木, 张云舒, 等. 不同类型外源碳添加对灰漠土土壤碳储量的影响[J]. 水土保持学报, 2023, 37(3): 330-335.
  [Chen Xinbang, Tang Guangmu, Zhang Yunshu, et al. Effects of different types of exogenous carbon addition on soil carbon storage in grey desert soil[J]. Journal of Soil and Water Conservation, 2023, 37(3): 330-335.]
[33] Sparks D L, Singh B, Siebecker M G. Environmental Soil Chemistry[M]. Netherlands: Elsevier, 2022.
[34] 高玉峰, 贺字典. 影响土壤真菌多样性的土壤因素[J]. 中国农学通报, 2010, 26(10): 177-181.
  [Gao Yufeng, He Zidian. Study on soil effect factors to fungal diversity in Hebei Province[J]. Chinese Agricultural Science Bulletin, 2010, 26(10) : 177-181.]
[35] 肖方南, 姜梦, 李媛媛, 等. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析[J]. 干旱区地理, 2021, 44(3): 759-768.
  [Xiao Fangnan, Jiang Meng, Li Yuanyuan, et al. Community structure and diversity of soil fungi in Tamarix ramosissima shrubs in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 759-768.]
[36] Liu B, Hu Y, Wang Y, et al. Effects of saline-alkali stress on bacterial and fungal community diversity in Leymus chinensis rhizosphere soil[J]. Environmental Science and Pollution Research, 2022, 29(46): 70000-70013.
[37] 郭成瑾, 张丽荣, 沈瑞清, 等. 宁夏境内腾格里沙漠固沙植物根际土壤真菌多样性研究[J]. 菌物学报, 2017, 36(5): 552-562.
  [Guo Chengjin, Zhang Lirong, Shen Ruiqing, et al. Diversity of rhizosphere soil fungi in sand-fixation plants in Tengger Desert in Ningxia Autonomous Region[J]. Mycosystema, 2017, 36(5): 552-562.]
[38] Papizadeh M, Wijayawardene N N, Amoozegar M A, et al. Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus[J]. Mycological Progress, 2018, 17(25): 661-679.
[39] 唐琦勇, 朱静, 楚敏, 等. 北疆盐角草内生真菌群落组成和分布[J]. 干旱区资源与环境, 2021, 35(5): 137-143.
  [Tang Qiyong, Zhu Jing, Chu Min, et al. Community composition and distribution of endophytic fungi in Salicornia europaea from the northern Xinjiang[J]. Journal of Arid Land Resources and Environment, 2021, 35 (5): 137-143.]
文章导航

/