水土资源

内蒙古伊敏盆地地下水水化学特征及其成因

  • 王平顺 ,
  • 苗新岳 ,
  • 燕亚平 ,
  • 董生旺 ,
  • 董少刚
展开
  • 1.内蒙古大学生态与环境学院,内蒙古 呼和浩特 010021
    2.内蒙古自治区河流与湖泊生态重点实验室,内蒙古 呼和浩特 010021
    3.东北农业大学资源环境学院,黑龙江 哈尔滨 150030
    4.内蒙古生态环境科学研究院有限公司,内蒙古 呼和浩特 010015
    5.内蒙古第一水文地质工程地质勘查有限责任公司,内蒙古 呼和浩特 010020
王平顺(2000-),男,硕士研究生,主要从事生态水文地质研究. E-mail: yuuwps@163.com
董少刚. E-mail: groundwater@163.com

收稿日期: 2023-11-13

  修回日期: 2023-12-28

  网络出版日期: 2024-04-01

基金资助

内蒙古自治区高等学校科学研究项目(NJZZ23089);国家自然科学基金项目(42267025)

Hydrochemical characteristics and genesis of groundwater in the Yimin Basin, Inner Mongolia

  • WANG Pingshun ,
  • MIAO Xinyue ,
  • YAN Yaping ,
  • DONG Shengwang ,
  • DONG Shaogang
Expand
  • 1. School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
    2. Key Laboratory of River and Lake Ecology of Inner Mongolia Autonomous Region, Hohhot 010021, Inner Mongolia, China
    3. College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    4. Inner Mongolia Academy of Ecological Environment Science Co., Ltd., Hohhot 010015, Inner Mongolia, China
    5. Inner Mongolia First Hydrogeological Engineering Geological Exploration Co., Ltd., Hohhot 010020, Inner Mongolia, China

Received date: 2023-11-13

  Revised date: 2023-12-28

  Online published: 2024-04-01

摘要

采矿活动强烈地改变了区域水文循环特征并对地下水化学特征产生明显影响,揭示煤矿开发影响下的地下水系统演变特征,可为煤矿区的生态环境保护和可持续发展提供理论支持。本文以内蒙古伊敏盆地为例,在水文地质调查的基础上结合地下水流动系统理论、Piper三线图、Gibbs图、离子比例系数、矿物饱和指数等分析方法探究煤矿开采活动干扰下的地下水化学变化特征。结果表明:研究区水环境整体上呈弱碱性,采矿显著影响区和非影响区内检测指标存在着不同程度的超标情况。盆地内煤矿开采疏排地下水加速了区域水文循环速度,使显著影响区水质向淡化方向演化。露天煤矿的开发使得原本封闭的地下水系统变得开放,含硫煤以及硫铁矿氧化产酸激发的一系列水-岩相互作用是区域地下水化学特征发生变化的主因。盆地地下水的水化学成分受蒸发浓缩作用和水-岩相互作用的影响。沿着地下水的流动方向,显著影响区内水化学类型是从HCO3-Ca·Na型向HCO3-Ca型变化,TDS和Cl-浓度呈现出下降趋势;在非影响区内是从HCO3-Ca·Na型向Cl-Ca·Mg型转变,TDS和Cl-浓度表现为上升趋势。

本文引用格式

王平顺 , 苗新岳 , 燕亚平 , 董生旺 , 董少刚 . 内蒙古伊敏盆地地下水水化学特征及其成因[J]. 干旱区研究, 2024 , 41(3) : 411 -420 . DOI: 10.13866/j.azr.2024.03.06

Abstract

Mining activities have strongly changed the characteristics of the regional hydrological cycle and have a significant impact on the chemical characteristics of groundwater. Revealing the evolutionary characteristics of the groundwater system under the influence of coal mine development can provide theoretical support for ecological environment protection and sustainable development in coal mine areas. In this paper, taking the Yimin Basin in Inner Mongolia as an example, based on hydrogeological investigation combined with the groundwater flow system theory, Piper three-line diagram, Gibbs diagram, ion proportional coefficient, mineral saturation index, and other analysis methods, the characteristics of groundwater chemical changes under the interference of coal mining activities were explored. Results indicate that the overall water environment in the study area is weakly alkaline, and the significant influence and noninfluence zones exceed the detection indexes in different degrees. Coal mining in the basin has accelerated the rate of regional hydrological cycle, causing the water quality in the significant impact zone to evolve toward desalination. The development of open-pit coal mining has opened up the previously closed groundwater system, and a series of water-rock interactions stimulated by the oxidation of sulfur-containing coal and sulfurous iron ore and acid production primarily cause the changes in the chemical characteristics of the regional groundwater. The hydrochemistry of groundwater in the basin is affected by evaporation, concentration and water-rock interactions. Along the flow direction of groundwater, the hydrochemical type in the significantly affected area changes from HCO3-Ca·Na type to HCO3-Ca, and the concentrations of TDS and Cl- show a downward trend. In the nonaffected zone, the hydrochemical type changed from HCO3-Ca·Na to Cl-Ca·Mg, and the concentrations of TDS and Cl- showed an upward trend.

参考文献

[1] 孔晓乐, 杨永辉, 曹博, 等. 永定河上游地表水-地下水水化学特征及其成因分析[J]. 环境科学, 2021, 42(9): 4202-4210.
  [Kong Xiaole, Yang Yonghui, Cao Bo, et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River Basin[J]. Environmental Science, 2021, 42(9): 4202-4210.]
[2] Aris A Z, Abdullah M H, Kim K W, et al. Hydrochemical changes in a small tropical island’s aquifer: Manukan island, Sabah, Malaysia[J]. Environmental Geology, 2009, 56(8): 1721-1732.
[3] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
  [Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
[4] 白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428.
  [Bai Fan, Zhou Jinlong, Zeng Yanyan. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428.]
[5] 王雨婷, 李俊霞, 薛肖斌, 等. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同[J]. 地球科学, 2021, 46(1): 308-320.
  [Wang Yuting, Li Junxia, Xue Xiaobin, et al. Similarities and differences of main controlling factors of natural high lodine groundwater between North China plain and Datong basin[J]. Earth Science, 2021, 46(1): 308-320.]
[6] 任晓辉, 吴玺, 高宗军, 等. 酒泉东盆地地下水化学特征及成因分析[J]. 干旱区资源与环境, 2019, 33(10): 109-116.
  [Ren Xiaohui, Wu Xi, Gao Zongjun, et al. Hydrochemical characteristics and formation mechanisms of groundwater in Jiuquan east basin[J]. Resources and Environment in Arid Areas, 2019, 33(10): 109-116.]
[7] Rybakov Y S, Dal’kov M P, Kaibichev I A, et al. Extraction of contaminant metals from dumped metacolloid ores in order to reduce their hazardousness[J]. Russian Journal of Applied Chemistry, 2016, 89(3): 374-380.
[8] 叶凯, 孙玉川, 贾亚男, 等. 岩溶地下水水体中有机氯农药和多氯联苯的残留特征及健康风险评价[J]. 环境科学, 2020, 41(12): 5448-5457.
  [Ye Kai, Sun Yuchuan, Jia Yanan, et al. Residual characteristics and health assessment analysis of OCPs and PCBs in karst groundwater[J]. Environmental Sciences, 2020, 41(12): 5448-5457.]
[9] 王强民, 靳德武, 王文科, 等. 榆神矿区地下水和干旱指数对植被耗水的联合影响[J]. 煤炭学报, 2019, 44(3): 841-847.
  [Wang Qiangmin, Jin Dewu, Wang Wenke, et al. Joint effects of groundwater and aridity index on the transpiration of vegetation: A case study in the Yushen mining area[J]. Coal Journal, 2019, 44(3): 841-847.]
[10] 杨秋, 曹英杰, 张宇, 等. 闭坑铅锌矿区地下水—矿坑水水化学特征及成因分析[J]. 生态环境学报, 2023, 32(2): 361-371.
  [Yang Qiu, Cao Yingjie, Zhang Yu, et al. Hydrochemical characteristics and its cause analysis of groundwater and mine water in closed lead zinc mining area[J]. Journal of Ecological Environment, 2023, 32(2): 361-371.]
[11] 陈陆望, 许冬清, 殷晓曦, 等. 华北隐伏型煤矿区地下水化学及其控制因素分析——以宿县矿区主要突水含水层为例[J]. 煤炭学报, 2017, 42(4): 996-1004.
  [Chen Luwang, Xu Dongqing, Yin Xiaoxi, et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of Coal, 2017, 42(4): 996-1004.]
[12] 涂婷, 王月, 安达, 等. 赣南稀土矿区地下水污染现状、危害及处理技术与展望[J]. 环境工程技术学报, 2017, 7(6): 691-699.
  [Tu Ting, Wang Yue, An Da, et al. Present situation, hazard and treatment technology of groundwater pollution in rare earth mining area of southern Jiangxi[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 691-699.]
[13] Tarasenko I, Kholodov A, Zin'kov A, et al. Chemical composition of groundwater in abandoned coal mines: Evidence of hydrogeochemical evolution[J]. Applied Geochemistry, 2022, 137(37): 105210.
[14] Qiao X, Li G, Li M, et al. Influence of coal mining on regional karst groundwater system: A case study in west mountain area of Taiyuan City, northern China[J]. Environmental Earth Sciences, 2011, 64(6): 1525-1535.
[15] Monika, Govil H, Guha S. Underground mine deformation monitoring using synthetic aperture radar technique: A case study of Rajgamar coal mine of Korba Chhattisgarh, India[J]. Journal of Applied Geophysics, 2023, 209(32): 104899.
[16] Kumar R, Sharma S, Ansari I, et al. Study on the impact of leaching from coal OB dumps on groundwater quality using toxic elements transport modeling[J]. Sustainable Mining Practices, 2017, 11(13): 185-195.
[17] Fallavena V L V, Pires M, Ferrarini S F, et al. Evaluation of zeolite/backfill blend for acid mine drainage remediation in coal mine[J]. Energy & Fuels, 2018, 32(2): 2019-2027.
[18] 夏蔓宏, 董少刚, 刘白薇, 等. 典型草原露天煤矿区地下水-湖泊系统演化[J]. 湖泊科学, 2020, 32(1): 187-197.
  [Xia Manhong, Dong Shaogang, Liu Baiwei, et al. Evolution of groundwater-lake system in typical open-pit coal mine area[J]. Lake Science, 2020, 32(1): 187-197.]
[19] 冯海波, 董少刚, 张涛, 等. 典型草原露天煤矿区地下水环境演化机理研究[J]. 水文地质工程地质, 2019, 46(1): 163-172.
  [Feng Haibo, Dong Shaogang, Zhang Tao, et al. Evolution mechanism of a groundwater system in the opencast coalmine area in the typical prairie[J]. Hydrogeological Engineering Geology, 2019, 46(1): 163-172.]
[20] Dong S, Feng H, Xia M, et al. Spatial-temporal evolutions of groundwater environment in prairie opencast coal mine area: A case study of Yimin coal mine, China[J]. Environmental Geochemistry and Health, 2020, 42(10): 3101-3118.
[21] Liu B, Tang Z, Dong S. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 2018, 128(27): 134-140.
[22] Larsen D, Mann R. Origin of high manganese concentrations in coal mine drainage, eastern Tennessee[J]. Journal of Geochemical Exploration, 2005, 86(3): 143-163.
[23] Zheng Q, Ma T, Wang Y, et al. Hydrochemical characteristics and quality assessment of shallow groundwater in Xincai River Basin, northern China[J]. Procedia Earth and Planetary Science, 2017, 17(9): 368-371.
[24] An Y, Lu W. Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos cretaceous basin, China[J]. Environmental Geochemistry and Health, 2017, 40(4): 1209-1219.
[25] 于开宁, 田剑, 刘景涛, 等. 兰州市地下水化学特征及演化模拟[J]. 地质与勘探, 2022, 58(4): 895-904.
  [Yu Kaining, Tian Jian, Liu Jingtao, et al. Hydrochemical characteristics and evolution simulation of groundwater in Lanzhou City[J]. Geology and Exploration, 2022, 58(4): 895-904.]
[26] 王攀, 靳孟贵, 路东臣. 河南省永城市浅层地下水化学特征及形成机制[J]. 地球科学, 2020, 45(6): 2232-2244.
  [Wang Pan, Jin Menggui, Lu Dongchen. Hydrogeochemistry characteristics and formation mechanismof shallow groundwater in Yongcheng City, Henan Province[J]. Geoscience, 2020, 45(6): 2232-2244.]
[27] 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389.
  [Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristicsand formation mechanism of groundwater in plain areas of Barkol-Yiwu basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389.]
[28] 李玉山, 李惠平, 王虎, 等. 河西堡化工园区地下水化学特征与高氟水成因机制[J]. 干旱区资源与环境, 2022, 36(12): 119-126.
  [Li Yushan, Li Huiping, Wang Hu, et al. Hydrochemical characteristics and formation mechanism of high-fluorine groundwater in the Hexibu chemical industrial park[J]. Resources and Environment in Arid Areas, 2022, 36(12): 119-126.]
[29] Chitsazan M, Aghazadeh N, Mirzaee Y, et al. Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia City, Iran[J]. Environment Development and Sustainability, 2017, 21(1): 331-351.
[30] 张怀胜, 蔡五田, 边超, 等. 衡水市桃城区浅层高氟地下水水化学特征与成因分析[J]. 科学技术与工程, 2021, 21(24): 10191-10198.
  [Zhang Huaisheng, Cai Wutian, Bian Chao, et al. Hydrochemical characteristics and genetic analysis of shallow high-fluorine groundwater in Taocheng district, Hengshui City[J]. Science and Technology and Engineering, 2021, 21(24): 10191-10198.]
[31] 张敏, 董少刚, 张文琦, 等. 红碱淖流域湖泊-地下水系统水化学特征及成因[J]. 干旱区资源与环境, 2022, 36(5): 102-109.
  [Zhang Min, Dong Shaogang, Zhang Wenqi, et al. Hydrochemical characteristics and genesis of lake-groundwater system in the Hongjiannao Basin[J]. Resources and Environment in Arid Areas, 2022, 36(5): 102-109.]
[32] 邹嘉文, 刘飞, 张靖坤. 南水北调典型受水区浅层地下水水化学特征及成因[J]. 中国环境科学, 2022, 42(5): 2260-2268.
  [Zou Jiawen, Liu Fei, Zhang Jingkun. Hydrochemical characteristics and formation mechanism of shallow groundwater in typical water receiving areas of the south-to-north water diversion project[J]. Environmental Science of China, 2022, 42(5): 2260-2268.]
文章导航

/