敦煌月牙泉域地下水系统水文地球化学特征分析
收稿日期: 2023-08-24
修回日期: 2023-12-04
网络出版日期: 2024-03-11
基金资助
国家重点研发计划课题(2019YFC1805105);甘肃省地下水工程及地热资源重点实验室开放基金项目(201902)
Analysis of the hydrogeochemical characteristics of the groundwater system in Dunhuang Crescent Lake
Received date: 2023-08-24
Revised date: 2023-12-04
Online published: 2024-03-11
选择河西走廊西端的月牙泉域作为研究对象,通过样品采集测试,对研究区内的水化学特征、环境同位素和水文地球化学过程进行了系统分析。结果表明:大气降雨(包括冰川融水)形成的出山河水是区内潜水的主要补给来源,二者存在密切的成因联系,局部地区受断裂构造或越流影响并受祁连山前深部地下径流侧向补给;党河灌区地下水的蒸发作用微弱,以人工开采为主要排泄方式,其他浅层地下水以蒸发为主要排泄项;地下水化学成分的演化受到碳酸和硅酸盐岩溶滤作用的影响;岩盐、石膏和硅酸盐岩的溶解作用、方解石和白云岩的沉淀作用以及蒸发作用是控制地下水盐分的主要因素,且在流域水循环过程中存在不同程度的混合作用。研究结果可为月牙泉生态保护与恢复提供科学依据。
李平平 , 盖楠 , 王晓丹 , 杨俊仓 . 敦煌月牙泉域地下水系统水文地球化学特征分析[J]. 干旱区研究, 2024 , 41(2) : 240 -249 . DOI: 10.13866/j.azr.2024.02.07
This study focuses on the Crescent Spring Area at the western end of the Hexi Corridor. Through sample collection experiments, the research systematically analyzed hydrochemical characteristics, environmental isotopes, and hydrogeochemical processes within the study area. The results indicate that mountain water, originating from atmospheric rainfall and glacial meltwater, is the primary source replenishing the diving pool in the area, with a close causal link between the two. Additionally, the local area is affected by the fault structure or cross-flow and receives lateral replenishment from the deep underground runoff in front of the Qilian Mountains. The evaporation effect of groundwater in the Danghe irrigation area is weak, primarily discharging through artificial mining. Other groundwater burial areas mainly discharge through evaporation and transpiration. The chemical composition of groundwater is influenced by the karst filtration involving carbonate and silicate. Key factors controlling groundwater salinity include the dissolution of rock salt, gypsum, and partite rocks, as well as the precipitation of calcite and dolomite, along with evaporation. Various degrees of mixing occur during the water cycle in the basin. Overall, these research findings provide a scientific basis for the ecological protection and restoration of Crescent Lake.
[1] | 李平平, 王晓丹, 缪云腾, 等. 敦煌月牙泉湖近百年水位变化及其原因分析[J]. 地质论评, 2020, 66(6): 1619-1625. |
[Li Pingping, Wang Xiaodan, Miao Yunteng, et al. The change of water level and its causes in Crescent Lake in Dunhuang area in the last 100 years[J]. Geological Review, 2020, 66(6): 1619-1625.] | |
[2] | 丁宏伟, 龚开诚. 敦煌月牙泉湖水位持续下降原因及对策分析[J]. 水文地质工程地质, 2004, 31(6): 74-77. |
[Ding Hongwei, Gong Kaicheng. Analyses of the reasons and countermeasures for the decline in the water level of the Crescent Spring Lake near Dunhuang[J]. Hydrogeology and Engineering Geology, 2004, 31(6): 74-77.] | |
[3] | 许朋柱, 秦伯强. 太湖湖滨带生态系统退化原因以及恢复与重建设想[J]. 水资源保护, 2002, 18(3): 31-36. |
[Xu Pengzhu, Qin Boqiang. Degeneration of ecosystem of lakeside zone around Taihu Lake and planning for its rehabilitatio[J]. Water Resources Protection, 2002, 18(3): 31-36.] | |
[4] | 尹念文, 魏玉涛. 月牙泉的成因分析[J]. 地下水, 2010, 32(2): 20-22. |
[Yin Nianwen, Wei Yutao. The analysis about the causes of crescent lake[J]. Ground Water, 2010, 32(2): 20-22.] | |
[5] | 孙显科, 吕亚军, 张大治, 等. 风成沙地地形1/10定律的研究与敦煌鸣沙山成因的猜想[J]. 中国沙漠, 2006, 26(5): 704-710. |
[Sun Xianke, Lv Yajun, Zhang Dazhi, et al. Probe into the “one-tenth” law of aeolian sandy landform and guess at causes of sand-dinging Mountain in Dunhuang[J]. Journal of Desert Research, 2006, 26(5): 704-710.] | |
[6] | 刘畅, 成建梅, 苏春利, 等. 敦煌月牙泉地区人工回灌下的地下水动态模拟[J]. 水资源保护, 2013, 29(2): 22-27, 75. |
[Liu Chang, Cheng Jianmei, Su Chunli, et al. Numerical study of groundwater dynamics with artificial recharge in Yueya Spring area, Dunhuang City[J]. Water Resources Protection, 2013, 29(2): 22-27, 75.] | |
[7] | 李平平, 王晓丹, 黎涛, 等. 敦煌月牙泉湖水位下降治理研究[J]. 西北地质, 2023, 56(5): 165-171. |
[Li Pingping, Wang Xiaodan, Li Tao, et al. Study on water level decline control of crescent lake in dunhuang[J]. Northwestern Geology, 2023, 56(5): 165-171.] | |
[8] | 张庆. 浅析敦煌月牙泉恢复补水工程对环境的影响[J]. 中国高新科技, 2021(16): 152-153. |
[Zhang Qing. Analysis on the environmental impact of the restoration and replenishment project of Dunhuang Yueya spring[J]. China High and New Technology, 2021(16): 152-153.] | |
[9] | 刘德玉, 贾贵义, 张伟, 等. 甘肃敦煌地区疏勒河尾闾区地下水化学特征及成因分析[J]. 地质论评, 2022, 68(1): 181-194. |
[Liu Deyu, Jia Guiyi, Zhang Wei, et al. Hydrochemical characteristics and genetic mechanism analysis of groundwater in the tail area of the Shule River, Dunhuang, Gansu[J]. Geological Review, 2022, 68(1): 181-194.] | |
[10] | 李平平, 王晓丹, 陈海龙. 苏干湖湿地与奎屯诺尔湿地之间水力联系研究[J]. 干旱区研究, 2022, 39(2): 429-435. |
[Li Pingping, Wang Xiaodan, Chen Hailong. Study on the hydraulic connection between the Sugan Lake Wetland and the Kuitunnuoer Wetland[J]. Arid Zone Research, 2022, 39(2): 429-435.] | |
[11] | 于漫, 于飞, 王东阳, 等. 基于地下水流场和含水介质分析的敦煌月牙泉成因研究[J]. 甘肃地质, 2019, 28(Z1): 80-84. |
[Yu Man, Yu Fei, Wang Dongyang, et al. Study on the genesis of Dunhuang Crescent Spring based on groundwater flow field and aquifer medium analysis[J]. Gansu Geology, 2019, 28(Z1): 80-84.] | |
[12] | 黎涛, 杨俊仓, 苏春丽, 等. 敦煌月牙泉域沉积环境及泉湖水化学成因分析[J]. 干旱区地理, 2013, 36(5): 812-817. |
[Li Tao, Yang Juncang, Su Chunli, et al. Strata sedimentary environment and hydrochemistry cause of Lake Grescent Spring in Dunhuang[J]. Arid Land Geography, 2013, 36(5): 812-817.] | |
[13] | 杨俊仓, 施锦, 黎涛. 敦煌月牙泉域风积沙含水层渗透速度示踪试验[J]. 水文地质工程地质, 2013, 40(3): 24-27. |
[Yang Juncang, Shi Jin, Li Tao. Tracing test for seepage velocity in the aeolian sand aquifer of the Crescent Lake near Dunhuang[J]. Hydrogeology and Engineering Geology, 2013, 40(3): 24-27.] | |
[14] | 施锦, 王建红. 机井开采对月牙泉水位的影响及应对措施[J]. 地下水, 2014(6): 57-58. |
[Shi Jin, Wang Jianhong. Groundwater exploitation influence on Crescent Lake water level and its countermeasures[J]. Underground Water, 2014(6): 57-58.] | |
[15] | 张克存, 屈建军, 牛清河, 等. 敦煌鸣沙山-月牙泉近地表风沙输移路径及强度[J]. 中国沙漠, 2015, 35(3): 521-525. |
[Zhang Kecun, Qu Jianjun, Niu Qinghe, et al. Near-surface aeolian sand paths and intensity around the Crescent Moon Spring, Dunhuang[J]. Journal of Desert Research, 2015, 35(3): 521-525.] | |
[16] | 安志山, 张克存, 牛清河, 等. 敦煌鸣沙山月牙泉景区高大沙丘短期动态变化特征[J]. 干旱区研究, 2016, 33(5): 981-987. |
[An Zhishan, Zhang Kecun, Niu Qinghe, et al. Short-term dynamic change of mega-dunes around the Crescent Spring in Dunhuang[J]. Arid Zone Research, 2016, 33(5): 981-987.] | |
[17] | 庞营军, 屈建军, 牛清河, 等. 敦煌月牙泉景区沙丘表面沙物质的粒度特征[J]. 干旱区研究, 2017, 34(3): 701-706. |
[Pang Yingjun, Qu Jianjun, Niu Qinghe, et al. Grain size characters of dune surface sediment in the Crescent Spring scenic spot, Dunhuang[J]. Arid Zone Research, 2017, 34(3): 701-706.] | |
[18] | Meredith K T, Hollins S E, Hughes C E, et al. Temporal variation in stable isotopes(18O and 2H) and major ion concen-trations within the Darling River between Bourke and Wilcannia due to variable flows, saline groundwater influx and evaporation[J]. Journal of Hydrology, 2009, 378: 313-324. |
[19] | 何建华, 秦文华, 郭嘉兵, 等. 敦煌绿洲地下水微量元素分布特征及其成因[J]. 中国沙漠, 2021, 41(2): 109-119. |
[He Jianhua, Qiu Wenhua, Guo Jiabing, et al. The characteristics of groundwater trace elements and its controlling factors in Dunhuang Oasis[J]. Journal of Desert Research, 2021, 41(2): 109-119.] | |
[20] | 张华. 地下水平衡与生态演替耦合模型研究——以疏勒河灌区为例[D]. 武汉: 华中科技大学, 2010. |
[Zhang Hua. A Study on the Coupling Model of Groundwater Balance and Ecological Succession: Taking the Shule River Irrigation District as an Example[D]. Wuhan: Huazhong University of Science and Technology, 2010.] | |
[21] | 郑文君. 灌溉对大同盆地高砷地下水的影响[J]. 中国资源综合利用, 2017, 35(9): 21-24. |
[Zheng Wenjun. Effect of irrigation on high arsenic groundwater in Datong Basin[J]. China Resources Comprehensive Utilization, 2017, 35(9): 21-24.] | |
[22] | 林苑. 碱预处理/膨润土协同强化餐厨垃圾厌氧消化及微生物群落结构研究[D]. 赣州: 江西理工大学, 2022. |
[Lin Wan. Study on the Synergistic Enhancement of Anaerobic Digestion and Microbial Community Structure of Kitchen Waste by Alkali Pretreatment/Bentonite[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.] | |
[23] | 段萌语. 大同盆地浅层地下水系统中砷的生物地球化学研究[D]. 武汉: 中国地质大学(武汉), 2009. |
[Duan Mengyu. Biogeochemistry of Arsenic in Shallow Groundwater System of Datong Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2009.] | |
[24] | 石磊. 鄂西中二叠世孤峰组放射虫及古生产力研究[D]. 武汉: 中国地质大学(武汉), 2013. |
[Shi Lei. A Study on Radiolaria and Paleoproductivity of the Middle Permian Gufeng Formation in Western Hubei[D]. Wuhan: China University of Geosciences(Wuhan), 2013.] | |
[25] | 朱庆增, 孙青, 苏治国, 等. 加速溶剂萃取-同位素质谱分析土壤水的氢氧同位素[J]. 分析化学, 2014, 42(9): 1270-1275. |
[Zhu Qingzeng, Sun Qing, Su Zhiguo, et al. A soil water extraction method using accelerated solvent extraction technique for stable isotope analysis[J]. Chinese Journal of Analytical Chemistry, 2014, 42(9): 1270-1275.] | |
[26] | 李义. 川东北地区长兴组-飞仙关组碳酸盐岩储层缝隙充填方解石的地球化学特征[D]. 武汉: 中国地质大学(武汉), 2011. |
[Li Yi. Geochemical Characteristics of Calcite Filled in Fractures of Changxing Feixianguan Carbonate Rock Reservoirs in Northeastern Sichuan[D]. Wuhan: China University of Geosciences(Wuhan), 2011.] | |
[27] | Li H C, Ku T L. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133: 69-80. |
[28] | 陈建龙. 甘肃金塔盆地地下水水化学特征及其演化模拟[D]. 兰州: 兰州大学, 2019. |
[Chen Jianlong. Hydrochemical Characteristics and Evolution Simulation of Groundwater in the Jinta Basin, Gansu Province[D]. Lanzhou: Lanzhou University, 2019.] | |
[29] | 韦玉婷, 罗敏, 袁伟, 等. 四川省泸县玉蟾山地区地下热矿水深循环模式浅析[J]. 长春工程学院学报(自然科学版), 2014, 15(1): 76-78, 112. |
[Wei Yuting, Luo Min, Yuan Wei, et al. Deep circulation model analysis of the geothermal water in Yuchan Mountain Luxian County Sichuan Province[J]. Journal of Changchun Institute of Technology(Natural Sciences Edition), 2014, 15(1): 76-78, 112.] | |
[30] | 刘建刚. 巴丹吉林沙漠湖泊和地下水补给机制[J]. 水资源保护, 2010, 26(2): 18-23. |
[Liu Jiangang. Recharge mechanisms of lakes and groundwater in Badain Jaran Desert[J]. Water Resources Protection, 2010, 26(2): 18-23.] | |
[31] | 董维红, 苏小四, 谢渊, 等. 鄂尔多斯白垩系盆地地下水水-岩反应的锶同位素证据[J]. 吉林大学学报(地球科学版), 2010, 40(2): 342-348. |
[Dong Weihong, Su Xiaosi, Xie Yuan, et al. Groundwater-rock interaction in the Ordos cretaceous groundwater basin: Strontium isotope evidence[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(2): 342-348.] | |
[32] | 王文博. 基于锶和氢氧同位素的敦煌盆地地下水演化与补给分析[J]. 地下水, 2022, 44(5): 77-79. |
[Wang Wenbo. Analysis of groundwater evolution and recharge in Dunhuang Basin based on strontium and hydrogen and oxygen isotopes[J]. Ground Water, 2022, 44(5): 77-79.] | |
[33] | 邓吉强, 康卫东, 邢高哲. 神北矿区乌兰木伦河地下水化学特征及其形成作用[J]. 科技创新与生产力, 2018(1): 57-61. |
[Deng Jiqiang, Kang Weidong, Xing Gaozhe. Hydrochemical characteristics and formation mechanics of groundwater in the Wulamulun River of Shenbei Mining District[J]. Sci-tech Innovation and Productivity, 2018(1): 57-61.] | |
[34] | 王平, 杨亮平, 林晓静, 等. 内蒙古河套平原高矿化咸水分布规律及成因分析[J]. 人民长江, 2018, 49(1): 44-50. |
[Wang Ping, Yang Liangping, Lin Xiaojing, et al. Distribution characteristics and formation of high mineralized saline groundwater in Hetao Plain, Inner Mongolia[J]. Yangtze River, 2018, 49(1): 44-50.] | |
[35] | Edmunds W, Tyler S. Unsaturated zones as archives of past cli-mates: toward a new proxy for continental regions[J]. Hydro-geology Journal, 2002, 10(1): 216-228. |
[36] | 姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究——以阿拉善腰坝绿洲为例[D]. 西安: 长安大学, 2009. |
[Jiang Ling. Study on the Formation and Evolution Mechanism of Groundwater Hydrochemical Composition in oasis in arid areas——Taking Alashan Yaoba Oasis as an Example[D]. Xi’an: Changan University, 2009.] | |
[37] | 黄天明. 应用环境同位素研究巴丹吉林沙漠地下水补给来源[D]. 兰州: 兰州大学, 2007. |
[Huang Tianming. Groundwater Recharge Source In Badain Jaran Desert: Evidence from Environmental Isotopes[D]. Lanzhou: Lanzhou University, 2007.] |
/
〈 | 〉 |