独库高速阿尔先沟段雪崩空间分布及因子探测
收稿日期: 2023-06-27
修回日期: 2023-10-16
网络出版日期: 2024-03-11
基金资助
交通运输行业重点科技项目(2022-ZD6-090);新疆交通运输科技项目(2022-ZD-006);新疆交投集团2021年度“揭榜挂帅”科技项目(ZKXFWCG2022060004);新疆交通设计院科技研发项目(KY2022021501)
Spatial distribution and factor analysis of avalanche in the Aerxiangou section of the Duku expressway
Received date: 2023-06-27
Revised date: 2023-10-16
Online published: 2024-03-11
拟建独库高速公路阿尔先沟段地貌以高山峡谷为主,由于降雪和气候变化,雪崩频发。利用无人机遥感解译与现场调研协同调查的方法识别92个雪崩点,选取高程、坡度、地表切割度、地面粗糙度,积雪期最大积雪深度、最大风速、平均温度和平均降雪量为驱动因子,运用地理探测器分析不同分辨率地形因子与雪崩稳定性的关系。结果表明:本研究区雪崩发育较为活跃,稳定性较差,但较多雪崩释放区、运动区位于山体坡面,堆积区位于远离拟建线路的谷底,对拟建线路影响较小。通过地理探测器分析,坡度、地面粗糙度对雪崩稳定性解释力与分辨率呈正相关,高程、地表切割度呈负相关,交互探测结果均是双因子增强或者非线性增强,且非线性增强比双因子增强更加显著,坡度与其他因子结合对雪崩稳定性影响至关重要。本研究可为雪崩易发性、危险性评价工作提供可靠的数据支撑,为独库高速公路的建设运营提供科学依据。
程秋连 , 刘杰 , 杨治纬 , 张天意 , 王斌 . 独库高速阿尔先沟段雪崩空间分布及因子探测[J]. 干旱区研究, 2024 , 41(2) : 220 -229 . DOI: 10.13866/j.azr.2024.02.05
The proposed Aerxiangou section of the Duku expressway, characterized by high mountainous terrain and canyons, faces frequent avalanches due to heavy snowfall and climate change. In this study, a collaborative investigation using UAV remote sensing interpretation and field research identified 92 avalanche points. In addition, elevation, slope, surface cutting degree, ground roughness, maximum snow depth, maximum wind speed, average temperature, and average snowfall were selected as driving factors. A geographical detector was used to examine the relationship between terrain factors, different resolutions, and avalanche stability. The results of this study revealed strong avalanche activity with generally poor stability in the study area. However, it was reassuring to note that most avalanche release and activity areas are located on mountain slopes. The accumulation area lies on the valley floor, a considerable distance away from the planned road route, thus minimizing its impact. Results from the geographical detector analysis suggest positive correlations between interpretations of slope and ground roughness with snow avalanche stability across varying resolutions. The interactive detection results are both double-factor enhancement and nonlinear enhancement, with the latter being more significant than the former. The combination of slope and other factors is crucial for determining the impact of avalanche stability. This study offers reliable data support for assessing avalanche vulnerability and risks, thereby establishing a solid scientific basis for constructing and operating the Duku expressway.
Key words: Aerxiangou; avalanche; geographical detector; driving factors; spatial distribution
[1] | 胡汝骥, 马维林, 王存牛. 中国天山的雪崩及其治理[J]. 冰川冻土, 1987, 9(S1): 13-24, 150. |
[Hu Ruji, Ma Weilin, Wang Cunniu. Avalanches in Tianshan Mountains, China, and their control[J]. Journal of Glaciology and Geocryology, 1987, 9(S1): 13-24, 150.] | |
[2] | 杨金明, 张旭, 毛炜峄. 等中国天山雪崩灾害调查分析[J]. 自然灾害学报, 2022, 31(1): 188-197. |
[Yang Jinming, Zhang Xu, Mao Weiyi, et al. Investigation and analysis of snow avalanche disaster in Tianshan Mountains of China[J]. Journal of Natural Disasters, 2022, 31(1): 188-197.] | |
[3] | 郝建盛, 李兰海. 雪崩灾害防治研究进展及展望[J]. 冰川冻土, 2022, 44(3): 762-770. |
[Hao Jiansheng, Li Lanhai. Research progress and prospect of snow avalanche disaster prevention and control[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 762-770.] | |
[4] | 马东涛, 崔鹏, 王忠华. 中尼公路雪害及防灾对策[J]. 山地学报, 2002, 20(1): 59-63. |
[Ma Dongtao, Cui Peng, Wang Zhonghua. An approach on snow hazards and their countermeasures along Sino-Nepalese highway[J]. Mountain Research, 2002, 20(1): 59-63.] | |
[5] | 胡汝骥, 马虹, 姜逢清. 中国天山积雪雪崩站区的地理环境[J]. 干旱区地理, 1997, 20(2): 25-33. |
[Hu Ruji, Ma Hong, Jiang Fengqing. Geographical environment in the area of Tianshan station for snow & avalanche research Yili, Xinjiang, China[J]. Arid Land Geography, 1997, 20(2): 25-33.] | |
[6] | 王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-26. |
[Wang Jian, Che Tao, Li Zhen, et al. Investigation on snow characteristics and their distribution in China[J]. Advances in Earth Science, 2018, 33(1): 12-26.] | |
[7] | 刘洋, 李兰海, 杨金明, 等. D-InSAR技术的积雪深度反演[J]. 遥感学报, 2018, 22(5): 802-809. |
[Liu Yang, Li Lanhai, Yang Jinming, et al. Snow depth inversion based on D-InSAR method[J]. National Remote Sensing Bulletin, 2018, 22(5): 802-809.] | |
[8] | Bulaji? B ?, Baji? S, Stojni? N. The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region[J]. Cold Regions Science and Technology, 2018, 149: 29-45. |
[9] | 郝建盛, 黄法融, 冯挺, 等. 亚洲高山区雪崩灾害时空分布特点及其诱发因素分析[J]. 山地学报, 2021, 39(2): 304-312. |
[Hao Jiansheng, Huang Farong, Feng Ting, et al. Analysis of spatio temporal distribution characteristics of snow avalanche disaster and its triggering factorsin the high mountain Asia[J]. Mountain Research, 2021, 39(2): 304-312.] | |
[10] | 郝建盛, 崔鹏, 张雪芹, 等. 天山中部大陆性雪气候条件下不同类型雪崩的诱发机制[J]. 中国科学: 地球科学, 2022, 52(12): 2428-2440. |
[Hao Jiansheng, Cui Peng, Zhang Xueqin, et al. The triggering mechanisms for different types of snow avalanches in the continental snow climate of the central Tianshan Mountains[J]. Scientia Sinica(Terrae), 2022, 52(12): 2428-2440.] | |
[11] | 文洪, 王栋, 王生仁, 等. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报, 2021, 29(2): 404-415. |
[Wen Hong, Wang Dong, Wang Shengren, et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, Southeast Tibetan Plateau[J]. Journal of Engineering Geology, 2021, 29(2): 404-415.] | |
[12] | Liu Y, Li L, Chen X, et al. Spatial distribution of snow depth based on geographically weighted regression Kriging in the Bayanbulak Basin of the Tianshan Mountains, China[J]. Journal of Mountain Science, 2018, 15(1): 33-45. |
[13] | Armelle D, Najat B, Janie F R, et al. The Development of Kangiqsualujjuaq and the Threat of Snow Avalanches in a Permafrost Degradation Context, Nunavik, Canada[M]. Université des Sciences et Technologies de Lille, 2020. |
[14] | 杨维涛, 孙建国, 马恒利, 等. 地貌形态多尺度综合分类方法[J]. 干旱区研究, 2022, 39(2): 638-645. |
[Yang Weitao, Sun Jianguo, Ma Hengli, et al. A multi-scale integrated classification method for landforms[J]. Arid Zone Research, 2022, 39(2): 638-645.] | |
[15] | Bühler Y, Kumar S, Veitinger J, et al. Automated identification of potential snow avalanche release areas based on digital elevation models[J]. Natural Hazards and Earth System Science, 2013, 13(5): 1321-1325. |
[16] | Soteres R L, Javier P, Carrasco R M. Snow avalanche susceptibility of the Circo de Gredos (Iberian Central System, Spain)[J]. Journal of Maps, 2020, 16(2): 1717655. |
[17] | Caiserman A, Sidle R C, Raj G D. Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan[J]. The Cryosphere, 2022, 16(8): 3295-3312. |
[18] | 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134. |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.] | |
[19] | 李鑫磊, 李瑞平, 王秀青, 等. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635. |
[Li Xinlei, Li Ruiping, Wang Xiuqing, et al. Spatiotemporal change and analysis of factors driving forest-grass vegetationcoverage in Hetao Irrigation District based on geographical detector[J]. Arid Zone Research, 2023, 40(4): 623-635.] | |
[20] | 周金, 范秋雁, 朱真. 基于地理探测器的广西泥石流地质灾害驱动因子分析[J]. 测绘与空间地理信息, 2022, 45(11): 245-248. |
[Zhou Jin, Fan Qiuyan, Zhu Zhen. Analysis of the driving factors of the geological disaster of debris flow in Guangxi based on the geographic detector[J]. Geomatics & Spatial Information Technology, 2022, 45(11): 245-248.] | |
[21] | 季建万, 姜琳琳, 刘文亮, 等. 基于多参数优选地理探测器的京津冀城市群地质灾害影响因子分析[J]. 地理与地理信息科学, 2023, 39(2): 39-45. |
[Ji Jianwan, Jiang Linlin, Liu Wenliang, et al. Analysis on influence factors of geological hazards in Beijing-Tianjin-Hebei urban agglomeration based on multi-parameters optimized by geodetector[J]. Geography and Geo-Information Science, 2023, 39(2): 39-45.] | |
[22] | Zhu Z, Wang J, Hu M, et al. Geographical detection of groundwater pollution vulnerability and hazard in Karst areas of Guangxi Province, China[J]. Environmental Pollution, 2019, 245: 627-633. |
[23] | 刘笑, 郭鹏, 祁佳峰, 等. 基于MRSEI模型的阿勒泰市生态环境时空变化及驱动力分析[J]. 干旱区研究, 2023, 40(6): 1014-1026. |
[Liu Xiao, Guo Peng, Qi Jiafeng, et al. Spatio-temporal changes and driving forces in the ecological environment of Altay City determined using an MRSEI model[J]. Arid Zone Research, 2023, 40(6): 1014-1026.] | |
[24] | Hao J, Mind’je R, Liu Y, et al. Characteristics and hazards of different snow avalanche types in a continental snow climate region in the Central Tianshan Mountains[J]. Journal of Arid Land, 2021, 13: 317-331. |
[25] | 史志文, 徐俊荣, 陈忠升, 等. 天山西部寒区山地生态系统近40年来气候变化特征——以中国科学院天山积雪雪崩研究站为例[J]. 山地学报, 2009, 27(1): 41-48. |
[Shi Zhiwen, Xu Junrong, Chen Zhongsheng, et al. Analysis on cimatic changes under global cliatic change: A case study of Tianshan snow and avalanche research station[J]. Mountain Research, 2009, 27(1): 41-48.] | |
[26] | 支泽民, 陈琼, 张强, 等. 地理探测器在判别滑坡稳定性影响因素中的应用——以西藏江达县为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 19-26. |
[Zhi Zemin, Chen Qiong, Zhang Qiang, et al. Application of geographic detector in identifying influencingfactors of landslide stability: A case studyof the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26.] | |
[27] | 陈联君. 基于多源数据的雪崩危险性评价一以北疆地区为例[D]. 北京: 中国地质大学, 2021. |
[Chen Lianjun. Avalanche Hazard Assessment Based on Multi-Source Data: A Case Study inNorthern Xinjiang[D]. Beijing: China University of Geosciences, 2021.] | |
[28] | Singh D K, Mishra V D, Gusain H S, et al. Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and In Situ Data[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3): 513-526. |
[29] | Nicolas E, Florie G. Towards a holistic paradigm for long-term snow avalanche risk assessment and mitigation[J]. Ambio, 2022, 52(4): 711-732. |
[30] | 汶林科, 向灵芝, 蔡毅, 等. 雪崩的形成机理研究[J]. 山地学报, 2016, 34(1): 1-11. |
[Wen Linke, Xiang Lingzhi, Cai Yi, et al. Research on the formation mechanism of avalanche[J]. Mountain Research, 2016, 34(1): 1-11.] | |
[31] | John S, Pascal H, Yves B. Automated snow avalanche release area delineation in data-sparse, remote, and forested regions[J]. Natural Hazards and Earth System Sciences, 2022, 22(10): 3247-3270. |
[32] | 苗运玲, 于永波, 霍达, 等. 中天山北坡冬季降雪变化及其影响因子分析[J]. 干旱区研究, 2023, 40(1): 9-18. |
[Miao Yunling, Yu Yongbo, Huo Da, et al. Analysis of winter snowfall variability and its influencing factors on the north slopes of the middle Tianshan Mountains[J]. Arid Zone Research, 2023, 40(1): 9-18.] | |
[33] | 刘海松, 范敏, 倪万魁, 等. 灰色关联度法在公路地质灾害危险性评价中的应用[J]. 水文地质工程地质, 2005(3): 32-34. |
[Liu Haisong, Fan Min, Ni Wankui, et al. Application of the method of gray correlation in riskevaluation of highway geological hazard[J]. Hydrogeology & Engineering Geology, 2005(3): 32-34.] |
/
〈 | 〉 |