天气与气候

东昆仑木孜塔格峰地区水汽来源分析

  • 吴佳康 ,
  • 陈丽花 ,
  • 车彦军 ,
  • 张明军 ,
  • 曹昀 ,
  • 谷来磊
展开
  • 1.江西师范大学地理与环境学院,江西 南昌 330022
    2.宜春学院地理科学系,江西 宜春 336000
    3.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    4.甘肃省绿洲资源环境与可持续发展重点实验室,甘肃 兰州 730070
吴佳康(1999-),硕士研究生,主要从事冰川区水文过程研究. E-mail: wjiakang@126.com

收稿日期: 2023-07-31

  修回日期: 2023-10-18

  网络出版日期: 2024-03-11

基金资助

第三次新疆综合科学考察项目(2021xjkk0101);国家自然科学基金项目(42101135);江西省自然科学基金项目(20232BAB203060);甘肃省绿洲资源环境与可持续发展重点实验室基金项目(GORS202103);江西师范大学研究生国内外访学研究项目

Analysis of moisture feeding in the Ulugh Muztagh area of the East Kunlun Mountains

  • WU Jiakang ,
  • CHEN Lihua ,
  • CHE Yanjun ,
  • ZHANG Mingjun ,
  • CAO Yun ,
  • GU Lailei
Expand
  • 1. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
    2. Department of Geographical Science, Yichun University, Yichun 336000, Jiangxi, China
    3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    4. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2023-07-31

  Revised date: 2023-10-18

  Online published: 2024-03-11

摘要

降水是山地冰川重要的补给,水汽来源与降水的多少密切相关。本文选取昆仑山东部木孜塔格峰现代冰川分布区,基于混合单粒子拉格朗日综合轨迹(HYSPLIT)模型和全球数据同化系统(GDAS)对木孜塔格峰地区2005—2022年水汽来源进行后向轨迹分析,并探讨其季节变化,揭示木孜塔格峰地区水汽来源及其规律。结果表明:木孜塔格峰地区的水汽源主要随着中纬度西风带向欧亚内陆延伸,在青藏高原西部分为三路,分别从天山山脉、帕米尔高原以及从高空平流层进入我国青藏高原,印度洋水汽向北翻越喜马拉雅山或者西北转向东与西风环流混合进入高原腹地。木孜塔格峰地区主要由陆源水汽控制,分别是从帕米尔高原和天山山脉进入,其水汽占总量的62.52%;海源水汽则为西风带的高空水汽(大西洋水汽)以及印度洋水汽,占总量的37.48%;且海源水汽的占比逐年上升。从多年季节平均角度分析,除了以上的水汽源以外,夏季的局地再循环水汽比重较高,占总量的22.64%。本文研究结果将为理解东昆仑木孜塔格峰地区水循环提供重要参考。

本文引用格式

吴佳康 , 陈丽花 , 车彦军 , 张明军 , 曹昀 , 谷来磊 . 东昆仑木孜塔格峰地区水汽来源分析[J]. 干旱区研究, 2024 , 41(2) : 211 -219 . DOI: 10.13866/j.azr.2024.02.04

Abstract

Precipitation acts as a crucial supply for mountain glaciers, and its water vapor source closely correlates to the amount of precipitation. This study focuses on the modern glacier distribution area of Ulugh Muztagh in the eastern Kunlun Mountains, analyzing water vapor sources in the region from 2005 to 2022 using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the Global Data Assimilation System (GDAS). Employing backward trajectory analysis, we reveal the source and regularity of water vapor in the Ulugh Muztagh region and discuss its seasonal changes. The results show that the water vapor source in the Ulugh Muztagh area mainly extends to the Eurasian interior along the midlatitude westerly belt and is divided into three routes entering the Qinghai-Tibet Plateau from the Tianshan Mountains, the Pamir Plateau, and over the high-altitude stratosphere. On the Qinghai-Tibet Plateau, water vapor from the Indian Ocean either moves northward over the Himalayas or turns northwestward to merge with the westerly circulation into the plateau’s hinterland. Land-source water vapor, entering from the Pamir Plateau and Tianshan Mountains, accounts for 62.52% of the total water vapor in the Ulugh Muztagh area. Meanwhile, sea source water vapor, comprising high-altitude water vapor from the westerly belt (Atlantic water vapor) and the Indian Ocean, accounts for 37.48% of the total water vapor. Notably, we find that the proportion of water vapor from the sea source has increased steadily over recent decades. Analyzing multiyear seasonal averages for water vapor, we find a notably high proportion of locally recycled water vapor in the summer, comprising 22.64% of the total. This study’s outcomes offer valuable insights into the water cycle dynamics of the Ulugh Muztagh area in the East Kunlun Mountains.

参考文献

[1] 孙赫, 苏凤阁, 黄敬恒, 等. 第三极西风和季风主导流域源区降水呈现不同梯度特征[J]. 科学通报, 2020, 65(1): 91-104.
  [Sun He, Su Fengge, Huang Jinghuan, et al. Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the Third Pole[J]. Chinese Science Bulletin, 2020, 65(1): 91-104.]
[2] 汤秋鸿, 刘宇博, 张弛, 等. 青藏高原及其周边地区降水的水汽来源变化研究进展[J]. 大气科学学报, 2020, 43(6): 1002-1009.
  [Tang Qiuhong, Liu Yubo, Zhang Chi, et al. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1002-1009.]
[3] Yu W, Yao T, Tian L, et al. Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research, 2008, 87(2): 158-169.
[4] Zhang C, Tang Q, Chen D, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
[5] An W, Hou S, Zhang Q, et al. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records[J]. Journal of Geophysical Research-Atmospheres, 2017, 122(23): 12541-12556.
[6] 田立德, 姚檀栋, 孙维贞, 等. 青藏高原南北降水中δD和δ-(18)O关系及水汽循环[J]. 中国科学(D辑:地球科学), 2001, 31(3): 214-220.
  [Tian Lide, Yao Tandong, Sun Weizhen, et al. Relationship between δD and δ18O in north-south precipitation of the Qinghai-Tibet Plateau and water vapor cycle[J]. Science in China (Series D), 2001, 31(3): 214-220.]
[7] Li Y, Su F, Chen D, et al. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(23): 12864-12881.
[8] 杨梅学, 姚檀栋, 田立德, 等. 藏北高原夏季降水的水汽来源分析[J]. 地理科学, 2004, 24(4): 426-431.
  [Yang Meixue, Yao Tandong, Tian Lide, et al. Analysis of precipitation from different water vapor sources in Tibetan Plateau[J]. Scientia Geographica Sinica, 2004, 24(4): 426-431.]
[9] 饶文波, 李垚炜, 谭红兵, 等. 高寒干旱区降水氢氧稳定同位素组成及其水汽来源: 以昆仑山北坡格尔木河流域为例[J]. 水利学报, 2021, 52(9): 1116-1125.
  [Rao Wenbo, Li Yaowei, Tan Hongbing, et al. Stable hydrogen-oxygen isotope composition and atmospheric moisture sources of precipitation in an arid-alpine region: A case study of the Golmud River Watershed on the North slope of the Kunlun Mountains[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1116-1125.]
[10] 余武生, 马耀明, 孙维贞, 等. 青藏高原西部降水中δ-(18)O变化特征及其气候意义[J]. 科学通报, 2009, 54(15): 2131-2139.
  [Yu Wusheng, Ma Yaoming, Sun Weizhen, et al. Climatic significance of δ18O records from precipitation on the western Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2131-2139.]
[11] 徐彦伟, 康世昌, 周石硚, 等. 青藏高原纳木错流域夏、秋季大气降水中δ-(18)O与水汽来源及温度的关系[J]. 地理科学, 2007, 27(5): 718-723.
  [Xu Yanwei, Kang Shichang, Zhou Shiqiao, et al. Variations of δ18O in summer and autumn precipitation and their relationships with moisture source and air temperature in Nam Lake Basin, Tibet Plateau[J]. Scientia Geographica Sinica, 2007, 27(5): 718-723.]
[12] Zhang C, Tang Q, Chen D. Recent changes in the moisture source of precipitation over the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1807-1819.
[13] Dong W, Lin Y, Wright J S, et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J]. Nature Communications, 2016, 7(1): 10925.
[14] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
  [Li Hu, Pan Xiaoduo. An overview of research methods on water vapor transport and sources in the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(10): 1025-1036.]
[15] Chen B, Zhang W, Yang S, et al. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season[J]. Climate Dynamics, 2019, 53(11): 6891-6907.
[16] 任行阔, 高晶, 杨育龙, 等. 慕士塔格地区大气水汽氢氧稳定同位素季节内变化特征及影响因素分析[J]. 冰川冻土, 2021, 43(2): 331-341.
  [Ren Xingkuo, Gao Jing, Yang Yulong, et al. Intra-seasonal characteristics of atmospheric water vapor stable isotopes at Muztagata and its climate controls[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 331-341.]
[17] 孙永, 易朝路, 刘金花, 等. 昆仑山木孜塔格地区冰川发育水汽来源探讨[J]. 地球环境学报, 2018, 9(4): 383-391.
  [Sun Yong, Yi Chaolu, Liu Jinhua, et al. Discussing sources of moisture feeding the glaciers on the Ulugh Muztagh, Kunlun Mountain[J]. Journal of Earth Environment, 2018, 9(4): 383-391.]
[18] Wang A, Smith J A, Wang G, et al. Late quaternary river terrace sequences in the eastern Kunlun Range, northern Tibet: A combined record of climatic change and surface uplift[J]. Journal of Asian Earth Sciences, 2009, 34(4): 532-543.
[19] Guo W Q, Liu S Y, Wei J F, et al. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing[J]. Annals of Glaciology, 2013, 54(63): 299-310.
[20] 王树基, 黄明敏. 东昆仑山冰川作用述要(以木孜塔格峰一带为例)[J]. 干旱区地理, 1986, 9(4): 46-49.
  [Wang Shuji, Huang Mingmin. Problems on glaciation in eastern Kunlun Mt[J]. Arid Land Geography, 1986, 9(4): 46-49.]
[21] 郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.
  [Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan glacier on North slopes of Muztag range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.]
[22] Hoover B T, Santek D A, Daloz A-S, et al. Forecast impact of assimilating aircraft WVSS-II water vapor mixing ratio observations in the Global Data Assimilation System (GDAS)[J]. Weather and Forecasting, 2017, 32(4): 1603-1611.
[23] Su L, Yuan Z, Fung J C H, et al. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets[J]. Science of the Total Environment, 2015, 506-507: 527-537.
[24] Perez I A, Artuso F, Mahmud M, et al. Applications of air mass trajectories[J]. Advances in Meteorology, 2015, 2015: 1-20.
[25] Warner M S C. Introduction to PySPLIT: A python toolkit for NOAA ARL’s HYSPLIT model[J]. Computing in Science & Engineering, 2018, 20(5): 47-62.
[26] 孟鸿飞, 张明军, 王圣杰, 等. CWT方法在中国夏季降水水汽来源识别中的应用[J]. 干旱区研究, 2018, 35(4): 872-881.
  [Meng Hongfei, Zhang Mingjun, Wang Shengjie, et al. Application of CWT method in identifying water vapor sources of summer precipitation in China[J]. Arid Zone Research, 2018, 35(4): 872-881.]
[27] 岳俊, 李国平. 应用拉格朗日方法研究四川盆地暴雨的水汽来源[J]. 热带气象学报, 2016, 32(2): 256-264.
  [Yue Jun, Li Guoping. Study on the moisture source of rainstorms in Sichuan Basin by the Lagrangian method[J]. Journal of Tropical Meteorology, 2016, 32(2): 256-264.]
[28] 曾钰婷, 张宇, 周可, 等. 青藏高原那曲地区夏季水汽来源及输送特征分析[J]. 高原气象, 2020, 39(3): 467-476.
  [Zeng Yuting, Zhang Yu, Zhou Ke, et al. Analysis on the source and transport characteristics of moisture in Naqu of the Qinghai-Tibetan Plateau in summer[J]. Plateau Meteorology, 2020, 39(3): 467-476.]
[29] Cui L, Song X, Zhong G. Comparative analysis of three methods for HYSPLIT atmospheric trajectories clustering[J]. Atmosphere, 2021, 12(6): 698.
[30] 庄晓翠, 李博渊, 赵江伟, 等. 基于HYSPLIT模式分析的塔克拉玛干沙漠南缘暴雨水汽特征[J]. 气象, 2022, 48(3): 311-323.
  [Zhuang Xiaocui, Li Boyuan, Zhao Jiangwei, et al. Water vapor characteristics of rainstorm in southern Taklimakan Desert based on HYSPLIT model analysis[J]. Meteorological Monthly, 2022, 48(3): 311-323.]
[31] Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015, 6(1): 109-124.
[32] 李颖, 苏凤阁, 汤秋鸿, 等. 青藏高原主要流域的降水水汽来源[J]. 中国科学:地球科学, 2022, 52(7): 1328-1344.
  [Li Ying, Su Fengge, Tang Qiuhong, et al. Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 52(7): 1328-1344.]
[33] Hua L, Zhong L, Ma Z. Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010: Precipitation Change in Northwest China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12522-12540.
文章导航

/