新疆空中水资源和地表水资源变化特征研究
收稿日期: 2023-07-30
修回日期: 2023-09-23
网络出版日期: 2024-03-11
基金资助
第三次新疆综合科学考察项目课题(2022xjkk0101);新疆“天山英才”青年科技拔尖人才专项(2022TSYCCX0005);新疆“天山英才”科技创新团队(2022TSYCTD0007)
Change in atmospheric and surface water resource in Xinjiang
Received date: 2023-07-30
Revised date: 2023-09-23
Online published: 2024-03-11
大气降水是新疆一切水资源的根本来源,空中水资源是大气降水的物质基础,大气降水在当地形成地表水资源。水资源短缺是制约新疆经济社会高质量发展和生态安全保障的最关键自然因素。本文分析新疆空中水资源和地表水资源的变化特征,对新疆水资源系统规划和高效利用具有重要的科学意义。结果显示:1961—2022年新疆年降水资源量为2717.12×108 m3,水汽输入量为21115×108 m3,水汽净收支量为347.5×108 m3,水汽降水效率为12.5%;2001—2021年新疆平均水资源总量为912.3×108 m3,其中地表水资源量为864.1×108 m3,产水系数为0.32。从变化趋势来看,1961—2022年新疆年降水量明显增加,新疆上空水汽总输入量和总输出量微弱减少,水汽净收支量微弱增加,水汽降水效率明显增加;2001—2021年新疆地表水资源处于丰水阶段,但产水系数有微弱的波动减小趋势。新疆水资源问题依然突出,在不同水资源精细化特征、不同相态水体转化关系等方面研究不足,未来需要加强研究以应对气候变化可能带来的新疆水资源安全风险。
姚俊强 . 新疆空中水资源和地表水资源变化特征研究[J]. 干旱区研究, 2024 , 41(2) : 181 -190 . DOI: 10.13866/j.azr.2024.02.01
The scarcity of water resources is the most critical natural factor impeding high-quality economic and social development and ecological security in Xinjiang. This paper systematically analyzes trends in precipitation, atmospheric water resources, and surface water resources in Xinjiang. It also establishes the conversion relationship between different water resources in Xinjiang. The findings reveal that annual precipitation water resources amount to 2717.12×108 m3, with water vapor input reaching 21115×108 m3, resulting in a net water vapor income of 347.5×108 m3. Between 1961 and 2022, Xinjiang experienced a 12.5% increase in precipitation conversion. The annual total water resources in Xinjiang is 912.3×108 m3, where surface water resources constituted 864.1×108 m3 from 2001 to 2020, resulting in a water yield coefficient of 0.32. The observed trends show a significant increase in annual precipitation in Xinjiang, a slight decrease in total water vapor input, a marginal increase in net water vapor income, and a significant increase in precipitation conversion between 1961 and 2022. Although surface water resources in Xinjiang are abundant, the water yield coefficient exhibited a weak fluctuating decreasing trend from 2001 to 2020. Nevertheless, prominent issues persist in water resources research in Xinjiang, including insufficient studies on precipitation water resource volumes, understanding of cloud water resource characteristics, and continuous monitoring of the physical process of cloud precipitation. To address these challenges, it is imperative to conduct comprehensive scientific field experiments on cloud precipitation physics, including strengthening research on the physical processes of cloud precipitation, refining cloud water resource assessments, and examining precipitation efficiency and water increase effects within typical cloud systems. These studies will aid in developing cloud water resources and air-groundwater resources joint control technology for arid areas.
[1] | 李江, 龙爱华. 近60年新疆水资源变化及可持续利用思考[J]. 水利规划与设计, 2021, 33(7): 1-5, 72. |
[Li Jiang, Long Aihua. Consideration on the change and sustainable utilization of water resources in Xinjiang in recent 60 years[J]. Water Resources Planning and Design, 2021, 33(7): 1-5, 72.] | |
[2] | 邓铭江, 龙爱华, 李江, 等. 西北内陆河流域“自然—社会—贸易”三元水循环模式解析[J]. 地理学报, 2020, 75(7): 1333-1345. |
[Deng Mingjiang, Long Aihua, Li Jiang, et al. Theoretical analysis of “natural-social-trading” ternarywater cycle mode in the inland river basin of Northwest China[J]. Acta Geographica Sinica, 2020, 75(7): 1333-1345.] | |
[3] | Yao Junqiang, Chen Yaning, Guan Xuefeng, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957. |
[4] | 陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393. |
[Chen Yaning, Li Zhongqin, Xu Jianhua, et al. Changes and protection suggestions in water resources and ecological environment in arid region of Northwest China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 385-393.] | |
[5] | Yao Junqiang, Zhao Yong, Chen Yaning, et al. Multi-scale assessments of droughts: A case study in Xinjiang, China[J]. Science of the Total Environment, 2017, 630: 444-452. |
[6] | Chen Yaning, Li Baofu, Fan Yuting, et al. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China[J]. Journal of Arid Land, 2019, 11(2): 161-179. |
[7] | Trenberth Kevin, Christian Guillemot. Evaluation of the global atmospheric moisture budget as seen from analyses[J]. Journal of Climate, 1995, 8(9): 2255-2272. |
[8] | Lennart Bengtsson. The global atmospheric water cycle[J]. Environmental Research Letters, 2010, 5: 025202. |
[9] | 蔡淼. 中国空中云水资源和降水效率的评估研究[D]. 南京: 南京信息工程大学, 2013. |
[Cai Miao. Cloud Water Resources and Precipitation Efficiency Evaluation over China[D]. Nanjing: Nanjing University of Information Technology, 2013.] | |
[10] | 丁一汇, 胡雯, 黄勇, 等. 淮河流域能量和水分循环研究进展[J]. 气象学报, 2020, 78(5): 721-734. |
[Ding Yihui, Hu Wen, Huang Yong, et al. The main scientific achievements of the first China-Japan cooperative GAME/HUBEX experiments: A historical review[J]. Acta Meteorologica Sinica, 2020, 78(5): 721-734.] | |
[11] | Yao Junqiang, Chen Yaning, Yang Qing. Spatial and temporal variability of water vapor pressure in the arid region of Northwest China, during 1961-2011[J]. Theoretical and Applied Climatology, 2016, 123(3): 683-691. |
[12] | 史玉光, 孙照渤. 新疆水汽输送的气候特征及其变化[J]. 高原气象, 2008, 27(2): 310-319. |
[Shi Yuguang, Sun Zhaobo. Climate characteristics of water vapor transportation and its variation over Xinjiang[J]. Plateau Meteorology, 2008, 27(2): 310-319.] | |
[13] | Yao Junqiang, Li Moyan, Yang Qing. Moisture sources of a torrential rainfall event in the East Xinjiang, arid China, based on a Lagrangian model[J]. Natural Hazards, 2018, 92(1): 183-195. |
[14] | Huang Wei, Song Feng, Chen Jianhui, et al. Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. Journal of Climate, 2015, 28(9): 3579-3591. |
[15] | Zhao Yong, Yu Xiaojing, Yao Junqiang, et al. The concurrent effects of the South Asian monsoon and the plateau monsoon over the Tibetan Plateau on summer rainfall in the Tarim Basin of China[J]. International Journal of Climatology, 2019, 39(1): 74-88. |
[16] | Zhao Yong, Zhang Huqiang. Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia[J]. Climate Dynamics, 2015, 46 (9-10): 3223-3238. |
[17] | Zhou Yushu, Xie Zeming, Liu Xin. An analysis of moisture sources of torrential rainfall events over Xinjiang, China[J]. Journal of Hydrometeorology, 2019, 20(10): 2109-2122. |
[18] | 刘喆栋, 黄良珂, 刘立龙, 等. 新疆地区ERA5和MERRA-2大气可降水量精度分析[J/OL]. 桂林理工大学学报: 1-9. [2023-09-11]. |
[Liu Zhedong, Huang Liangke, Liu Lilong, et al. Accuracy analysis of precipitable water vapor products of ERA5 and MERRA-2 in Xinjiang[J/OL]. Journal of Guilin University of Technology, 1-9. [2023-09-11].] | |
[19] | Qu Lianglu, Yao Junqiang, Yong Zhao. Mechanism analysis of the summer dry-wet interdecadal transition in the Tarim Basin, Northwest China[J]. Atmospheric Research, 2023, 291: 106840. |
[20] | 王绍业, 倪用鑫, 彭华, 等. 近20年延河流域生长季产水系数时空变化特征及影响因素[J]. 水土保持研究, 2023, 30(3): 423-429. |
[Wang Shaoye, Ni Yongxin, Peng Hua, et al. Temporal and spatial variation characteristics and influencing factors of water yield coefficient in the growth season of Yanhe River Basin in the past 20 years[J]. Research of Soil and Water Conservation, 2023, 30(3): 423-429.] | |
[21] | 朱得胜, 吕锡芝, 倪用鑫, 等. 2001-2018年伊洛河流域产水系数演变分析[J]. 中国农村水利水电, 2022, 47(9): 139-145. |
[Zhu Desheng, Lv Xizhi, Ni Yongxin, et al. An analysis of the changes in the water yield coefficient in the Yiluo River Basin from 2001 to 2018[J]. China Rural Water and Hydropower, 2022, 47(9): 139-145.] | |
[22] | 史玉光. 新疆降水与水汽的时空分布及变化研究[M]. 北京: 气象出版社, 2014. |
[Shi Yuguang. Spatial and Temporal Distribution and Variation of Precipitation and Water Vapor in Xinjiang[M]. Beijing: China Meteorological Press, 2014.] | |
[23] | Yao Junqiang, Chen Yaning, Zhao Yong, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823. |
[24] | 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828. |
[Zhang Qiang, Yang Jinhu, Wang Pengling, et al. Progress and prospect on climate warming and humidificationin Northwest China[J]. Chinese Science Bulletin, 2023, 68(14): 1814-1828.] | |
[25] | 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545. |
[Liu Weicheng, Zhang Qiang, Fu Chao. Variation characteristics of precipitation and its affecting factors in Northwest China over the past 55 years[J]. Plateau Meteorology, 2017, 36(6): 1533-1545.] | |
[26] | Zhou Yuquan, Cai Miao, Tan Chao, et al. Quantifying the cloud water resource: Basic concepts and characteristics[J]. Journal of Meteorological Research, 2020, 34(6): 1242-1255. |
[27] | Cai Miao, Zhou Yuquan, Tang Yahui, et al. Diagnostic quantification of the cloud water resource in China during 2000-2019[J]. Journal of Meteorological Research, 2022, 36(2): 292-310. |
[28] | Guan Jingyun, Yao Junqiang, Li Moyan, et al. Historical changes and projected trends of extreme climate events in Xinjiang, China[J]. Climate Dynamics, 2022, 59: 1753-1774. |
[29] | 中国气象局. 中国气候变化蓝皮书(2023)[M]. 北京: 科学出版社, 2023. |
[China Meteorological Administration. Blue Book on Climate Change in China 2023[M]. Beijing: Science Press, 2023.] |
/
〈 | 〉 |