水土资源

污泥热碱液对干旱胁迫下小青菜生长的缓解机制

  • 白炬 ,
  • 刘晓林 ,
  • 李申 ,
  • 梁哲铭 ,
  • 胥子航 ,
  • 王永亮 ,
  • 杨治平
展开
  • 1.山西农业大学生态环境产业技术研究院,农业农村部盐碱土改良与利用重点实验室(学科群),山西 太原 030031
    2.土壤环境与养分资源山西省重点实验室,山西 太原 030031
    3.山西大学生命科学学院,山西 太原 030006
白炬(1994-),男,博士,助理研究员,主要从事作物施肥与新型肥料研发研究. E-mail: baiju@sxau.edu.cn

收稿日期: 2023-07-20

  修回日期: 2023-10-10

  网络出版日期: 2024-01-24

基金资助

山西省科技重大专项计划项目(202201140601028);山西省重点研发计划项目(202202140601010);山西农业大学“特”“优”农业高质量发展科技支撑工程(TYGC-34);山西农业大学校企合作项目(2023HX006)

Mechanism of sludge alkaline thermal hydrolysis liquid on the growth of Brassica chinensis under drought stress

  • Ju BAI ,
  • Xiaolin LIU ,
  • Shen LI ,
  • Zheming LIANG ,
  • Zihang XU ,
  • Yongliang WANG ,
  • Zhiping YANG
Expand
  • 1. Key Laboratory of Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs (Subject Group), Institute of Eco-environment and Industrial Technology, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2. Shanxi Provincial Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031, Shanxi, China
    3. College of Life Sciences, Shanxi University, Taiyuan 030006, Shanxi, China

Received date: 2023-07-20

  Revised date: 2023-10-10

  Online published: 2024-01-24

摘要

近年来,为实现城市生活污泥的资源化利用,通过碱热水解技术制成的污泥热碱液被广泛关注。干旱是自然界中主要非生物胁迫之一,严重限制了作物的生长发育。为了改善干旱胁迫对蔬菜作物的影响,同时实现污泥资源化利用,本研究以小青菜(Brassica chinensis)为材料,通过盆栽试验设置4个水分梯度模拟不同干旱程度,在不同干旱程度下分别冲施等氮量的热碱液和尿素溶液,探讨热碱液对叶菜抵抗干旱胁迫的作用机制。结果表明:干旱胁迫下,经热碱液处理后,小青菜根长密度、根表面积密度和根体积密度均显著增加,进而促进对水分和氮素营养的吸收,提高叶片相对含水量,维持光合作用;冗余分析表明热碱液的施用主要提高过氧化氢酶活性和叶片相对含水量降低干旱胁迫对小青菜生长的负面影响。综上所述,将污泥热碱液应用到蔬菜生产中可缓解干旱胁迫对叶菜造成的生长抑制,为干旱地区蔬菜生产提供了策略,也为有效无害化、资源化利用城市生活污泥提供了一种新途径。

本文引用格式

白炬 , 刘晓林 , 李申 , 梁哲铭 , 胥子航 , 王永亮 , 杨治平 . 污泥热碱液对干旱胁迫下小青菜生长的缓解机制[J]. 干旱区研究, 2024 , 41(1) : 80 -91 . DOI: 10.13866/j.azr.2024.01.08

Abstract

In recent years, there has been considerable attention given to the utilization of urban domestic sludge through the production of sludge alkaline thermal hydrolysis liquid using alkaline hot water lysis. Drought is a major abiotic stress in nature, severely limiting crop production. To effectively mitigate the adverse impact of drought stress on vegetables and explore the potential of sludge utilization, this study used Brassica chinensis as the research object. Different levels of drought stress were induced by creating four soil moisture gradients. Equal amounts of nitrogen from alkaline thermal hydrolysis liquid derived from sludge and urea solution were applied under different levels of drought stress to examine the resistance mechanism of the sludge-derived alkaline thermal hydrolysis liquid to drought stress. The results showed that when exposed to different drought stress conditions, the use of alkaline thermal hydrolysis liquid derived from sludge significantly improved the root length density, root surface area density, and root volume density. This enhancement improved the ability of B. chinensis to absorb water and nutrients from the soil and increased the leaf’s relative water content, helping maintain the plant’s photosynthesis process. Based on the redundancy analysis, applying alkaline thermal hydrolysis liquid to sludge could increase the leaf’s relative water content and improve catalase activity, thereby alleviating the growth inhibition of B. chinensis induced by drought stress. In summary, the application of alkaline thermal hydrolysis liquid in vegetable production can help alleviate growth impediments caused by drought stress on leafy vegetables, provide a strategy for vegetable production in arid areas, and introduce a novel method for the safe and effective utilization of urban sludge.

参考文献

[1] 庞鑫. 山西省农业干旱时空变化特征及其与气象因子的响应研究[D]. 太原: 太原理工大学, 2017.
[1] [Pang Xin. Temporal and Spatial Variation Characteristics of Agricultural Drought and Its Response to Meteorological Factors in Shanxi[D]. Taiyuan: Taiyuan University of Technology, 2017.]
[2] 李娜, 霍治国, 钱锦霞, 等. 基于改进后相对湿润度指数的山西省气象干旱时空特征[J]. 生态学杂志, 2019, 38(7): 2249-2257.
[2] [Li Na, Huo Zhiguo, Qian Jinxia, et al. Spatiotemporal distribution of drought in Shanxi Province based on modified relative moisture index[J]. Chinese Journal of Ecology, 2019, 38(7): 2249-2257.]
[3] Li Z, Zhang Y, Liu C, et al. Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress[J]. Frontiers in Microbiology, 2022, 13(14): 991781.
[4] Park J, Park S, Kim M. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge[J]. Environmental Technology, 2014, 35(9-12): 1133-1139.
[5] 尚明娟, 曹骏, 常智慧. 污泥对草坪草逆境生理的影响[J]. 草业科学, 2017, 34(8): 1591-1600.
[5] [Shang Mingjuan, Cao Jun, Chang Zhihui. Effect of biosolid on turf grass stress physiology[J]. Pratacultural Science, 2017, 34(8): 1591-1600.]
[6] Abdul R, Vineet S S, Jun H, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review[J]. Chemical Engineering Journal, 2018, 337(49): 616-641.
[7] Gao N, Quan C, Liu B, et al. Continuous pyrolysis of sewage sludge in a screw-feeding reactor: Products characterization and ecological risk assessment of heavy metals[J]. Energy & Fuels, 2017, 31(5): 5063-5072.
[8] Zhang X X, Huang J, Lin L, et al. Current status of technology and standards of sludge recycling in China[J]. IOP Conference Series: Earth and Environmental Science, 2020, 510(4): 42036.
[9] Tang Y, Xie H, Sun J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants[J]. Water Research, 2022, 211: 118036.
[10] Sigala J A, Uscola M, Oliet J A, et al. Drought tolerance and acclimation in Pinus ponderosa seedlings: The influence of nitrogen form[J]. Tree Physiology, 2020, 40(9): 1165-1177.
[11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[11] [Bao Shidan. Soiland Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000.]
[12] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[12] [Li Hesheng. Plant Physiological and Biochemical Principles and Experimental Techniques[M]. Beijing: Higher Education Press, 2000.]
[13] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
[13] [Gao Junfeng. Experimental Guidance of Plant Physiology[M]. BeiJing: Higher Education Press, 2006.]
[14] 苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响[J]. 草地学报, 2023, 31(3): 726-732.
[14] [Su Lina, Ma Dongmei, Li Jiawen, et al. Implications of exogenous melatonin on the physiological and photosynthetic characteristics of the seedlings of two alfalfa varieties[J]. Acta AgrestiaSinica, 2023, 31(3): 726-732.]
[15] Shoaib M, Banerjee B P, Hayden M, et al. Roots’drought adaptive traits in crop improvement[J]. Plants (Basel), 2022, 11(17): 2256.
[16] 马富举, 李丹丹, 蔡剑, 等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报, 2012, 23(3): 724-730.
[16] [Ma Fuju, Li Dandan, Cai Jian, et al. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress[J]. Chinese Ournal of Applied Ecology, 2012, 23(3): 724-730.]
[17] 陈爱萍, 隋晓青, 王玉祥, 等. 干旱胁迫及复水对伊犁绢蒿幼苗生长及生理特性的影响[J]. 草地学报, 2020, 28(5): 1216-1225.
[17] [Chen Aiping, Sui Xiaoqing, Wang Yuxiang, et al. Effects of drought and re-watering on growth and physiological characteristics of seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2020, 28(5): 1216-1225.]
[18] 张健, 李燕婷, 袁亮, 等. 氨基酸发酵尾液可促进樱桃番茄对水溶肥料氮素的吸收利用[J]. 植物营养与肥料学报, 2018, 24(1): 114-121.
[18] [Zhang Jian, Li Yanting, Yuan Liang, et al. Tail liquid from amino acid fermentation could improve the uptake and utilization of water soluble fertilizer nitrogen by cherry tomato[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 114-121.]
[19] 常宏, 杨洪国, 赵广东, 等. 施氮和减水对中亚热带壳斗科三种幼树生物量及其分配的影响[J]. 生态学报, 2019, 39(18): 6753-6761.
[19] [Chang Hong, Yang Hongguo, Zhao Guangdong, et al. Effects of nitrogen application and rainfall exclusion on biomass and biomass allocation in saplings from three species of the Fagaceae family in the mid-subtropical region of China[J]. Acta Ecologica Sinica, 2019, 39(18): 6753-6761.]
[20] 韩鲁杰, 冯一清, 杨秀华, 等. 有机肥化肥配施对大棚黄瓜根区土壤与根系特征的影响[J]. 园艺学报, 2022, 49(5): 1047-1059.
[20] [Han Lujie, Feng Yiqing, Yang Xiuhua, et al. Effects of combined application of organic and chemical fertilizers on root zone soil and root characteristics of cucumber in plastic greenhouse[J]. Acta Horticulturae Sinica, 2022, 49(5): 1047-1059.]
[21] 李敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72.
[21] [Li Min, Zhao Xizhou, Wang Haoyun, et al. Effects of drought stress and ectomycorrhizal fungi on the root morphology and exudates of Pinus massoniana seedlings[J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72.]
[22] Wang X C, Samo N, Li L, et al. Root distribution and its impacts on the drought tolerance capacity of hybrid rice in the Sichuan basin area of China[J]. Agronomy, 2019, 9(2): 79.
[23] Hormoz B. Kinetics of nutrient uptake by roots: Responses to global change[J]. New Phytologist, 2000, 147(1): 155-169.
[24] 王凯, 逄迎迎, 吕林有, 等. 杨树幼苗自然干旱过程中非结构性碳水化合物变化[J]. 生态学杂志, 2021, 40(7): 1969-1978.
[24] [Wang Kai, Pang Yingying, Lv Linyou, et al. Changes of non-structural carbohydrates of Populus×xiaozhuanica cv. Zhangwu seedlings during process of natural drought[J]. Chinese Journal of Ecology, 2021, 40(7): 1969-1978.]
[25] 李科, 马剑. 有机无机配施对旱作冬小麦水分利用率的影响[J]. 土壤通报, 2018, 49(5): 1170-1175.
[25] [Li Ke, Ma Jian. Effects of combined application of organic and inorganic fertilization on water use efficiency of winter wheat in dryland[J]. Chinese Journal of Soil Science, 2018, 49(5): 1170-1175.]
[26] 孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569-1579.
[26] [Sun Yimei, Tian Qing, Lv Peng, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf trait, and productivity in a semiarid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569-1579.]
[27] 尚佳州, 赵瑜琦, 王卫锋, 等. 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022, 39(3): 893-899.
[27] [Shang Jiazhou, Zhao Yuqi, Wang Weifeng, et al. Response of drought on water and nitrogen utilization and carbohydrate distribution of Populus×euramericana ‘Biyu’ cuttings[J]. Arid Zone Research, 2022, 39(3): 893-899.]
[28] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应[J]. 应用生态学报, 2021, 32(2): 513-520.
[28] [Ma Yue, Su Baoling, Han Yangang, et al. Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 513-520.]
[29] 曹让, 梁宗锁, 吴洁云, 等. 干旱胁迫及复水对棉花幼苗根系氮代谢的影响[J]. 水土保持学报, 2012, 26(6): 274-280.
[29] [Cao Rang, Liang Zongsuo, Wu Jieyun, et al. Effect of progressive drying stress and the subsequent re-watering on root nitrogen metabolism in cotton seedings[J]. Journal of Soil and Water Conservation, 2012, 26(6): 274-280.]
[30] Heinemann B, Hildebrandt T M. The role of amino acid metabolism in signaling and metabolic adaptation to stress induced energy deficiency in plants[J]. Journal of Experimental Botany, 2021, 72(13).
[31] 邓平, 吴敏, 赵英, 等. 干旱胁迫下外源钙对桂西北喀斯特地区青冈栎种子萌发的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2): 69-79.
[31] [Deng Ping, Wu Min, Zhao Ying, et al. Effects of exogenous calcium on seed germination of Cyclobalanopsis glauca in Karst area of Northwestern Guangxi under draught stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(2): 69-79.]
[32] 庄晔, 刘瑞恒, 付国占, 等. 外源花青素对干旱胁迫下烤烟幼苗生长及其生理特性的影响[J]. 干旱地区农业研究, 2022, 40(6): 63-71.
[32] [Zhuang Ye, Liu Ruiheng, Fu Guozhan, et al. Effects of exogenous anthocyanins on growth and physiological characteristics of flue-cured tobacco seedlings under drought stress[J]. Agricultural Research in the Arid Areas, 2022, 40(6): 63-71.]
[33] Azab E S, Alshallash K S, Alqahtani M M, et al. Physiological, anatomical, and agronomic responses of cucurbita pepo to exogenously sprayed potassium silicate at different concentrations under varying water regimes[J]. Agronomy (Basel), 2022, 12(9): 2155.
文章导航

/