气候因素和人类活动对砒砂岩区植被净初级生产力的影响
收稿日期: 2023-05-30
修回日期: 2023-08-04
网络出版日期: 2023-12-18
基金资助
北京市科技新星计划(2006A22);国家重点研发计划“砒砂岩区复合土壤侵蚀综合治理技术(2017YFC0504503)
Impact of climatic factors and human activities on the net primary productivity of the vegetation in the Pisha sandstone area
Received date: 2023-05-30
Revised date: 2023-08-04
Online published: 2023-12-18
砒砂岩区是黄土高原水土流失最严重的地区之一,其植被生长状况对该区控制土壤侵蚀和维护生态平衡起着重要作用。本文基于CASA模型和Rclimdex 1.0分别计算了2001—2021年砒砂岩区植被净初级生产力NPP和18个极端气候指数,采用趋势分析、相关分析、随机森林重要性排序、残差分析等研究了砒砂岩区NPP时空变化及其对气候因素的响应特征,并量化了气候因素和人类活动对砒砂岩区NPP的相对贡献。结果表明:(1) 2001—2021年砒砂岩区NPP变化呈显著增加趋势,但未来82.5%的区域NPP将由增加趋势变为减少趋势。(2) 年际尺度上,砒砂岩区NPP与年均气温、年总降水量、极端强降水指数主要呈正相关,与冷夜日数TN10P、气温日较差DTR呈负相关。季节尺度上,春季均温以及暖夜日数增加有利于NPP增加,且存在滞后影响。夏季暖昼日数增加不利于植被生长,且NPP对夏季暖昼日数存在3个月的滞后响应。夏季极端强降水有利于NPP增加,而夏季干旱不利于植被生长,且NPP对持续干燥日数CDD存在3个月的滞后响应。(3) 气候因素和人类活动共同促进了砒砂岩区NPP增加,裸露区和覆沙区气候贡献占主导地位,气候因素相对贡献为62.13%和60.06%,覆土区以人类活动贡献为主导,人类活动贡献率为60.40%。
关键词: 砒砂岩区; 植被净初级生产力(NPP); 极端气候; 人类活动; 残差分析
王怡恩 , 饶良懿 . 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023 , 40(12) : 1982 -1995 . DOI: 10.13866/j.azr.2023.12.11
As a highly serious soil and water loss area in the Loess Plateau, vegetation growth plays an important role in controlling soil erosion and maintaining ecological balance. This study calculated the net primary productivity of vegetation NPP and 18 extreme climate indices in the Pisha sandstone area from 2001 to 2021 based on the CASA model and Rclimdex 1.0, respectively. Trend analysis, correlation analysis, random forest importance ranking, and residual analysis were used to study the spatial-temporal variation of NPP and its response to climate factors in the Pisha sandstone area. The relative contributions of climate factors and human activities to the NPP in the Pisha sandstone area were also calculated. The results showed that (1) NPP variation in all regions of the Pisha sandstone area from 2001 to 2021 had a significant increasing trend, but in the future, 82.5% of the NPP in the Pisha sandstone area will change to a decreasing trend. (2) On the annual scale, NPP correlated positively with average annual temperature, total annual precipitation, and extreme heavy precipitation index and correlated negatively with cold night days TN10P and diurnal temperature range DTR. On the seasonal scale, the increase in average temperature and warm night days in spring was conducive to increase NPP, and there is a lag effect. Increasing the number of warm days in summer was unconducive to vegetation growth, and the NPP has a three-month lag response to the number of warm days in summer. Extreme heavy precipitation in summer was conducive to NPP increase, whereas summer drought was unconducive to vegetation growth, and NPP has a three-month lag response to the number of continuous dry days. (3) Both climate change and human activities contribute positively to NPP in the Pisha sandstone area. The climate contribution of the bare area and the covered sand area is dominant (62.13% and 60.06%, respectively), whereas that of the covered soil area is dominated by human activities (60.40%).
[1] | 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 3(31): 413-424. |
[1] | [Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 3(31): 413-424. ] |
[2] | 陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例[J]. 地理学报, 2016, 71(1): 35-48. |
[2] | [Chen Xiaoling, Zeng Yongnian. Spatial and temporal variability of the net primary production (NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China: A case study in Hunan province[J]. Acta Geographica Sinica, 2016, 71(1): 35-48. ] |
[3] | Ge W, Deng L, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773: 145648, doi:10.1016/j.scitotenv.2021.145648. |
[4] | Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature sustainability, 2019, 2(2): 122-129. |
[5] | Piao S, Wang X, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[6] | Higgins S I, Conradi T, Muhoko E. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends[J]. Nature Geoscience, 2023, 16(2): 147-153. |
[7] | Wu Z, Dijkstra P, Koch G, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation[J]. Global Change Biology, 2011, 17(2): 927-942. |
[8] | 任丽雯, 王兴涛, 刘明春, 等. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828. |
[8] | [Ren Liwen, Wang Xingtao, Liu Mingchun, et al. Temporal and Spatial changes and the driving factors of vegetation NPP in Shiyang River Basin[J]. Arid Zone Research, 2023, 40(5): 818-828. ] |
[9] | 张赟鑫, 郝海超, 范连连, 等. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[9] | [Zhang Yunxin, Hao Haichao, Fan Lianlian, et al. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022, 39(3): 698-707. ] |
[10] | Liu L, Peng J, Li G, et al. Effects of drought and climate factors on vegetation dynamics in Central Asia from 1982 to 2020[J]. Journal of Environmental Management, 2023, 328: 116997, doi:10.1016/j.jenvman.2022.116997. |
[11] | Pan S, Tian H, Dangal S R S, et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century[J]. Journal of Geographical Sciences, 2015, 25(9): 1027-1044. |
[12] | Yan W, He Y, Cai Y, et al. Relationship between extreme climate indices and spatiotemporal changes of vegetation on Yunnan Plateau from 1982 to 2019[J]. Global Ecology and Conservation, 2021, 31: e1813, doi: 10.1016/j.gecco.2021.e01813. |
[13] | Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 5994(329): 940-943. |
[14] | 张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. |
[14] | [Zhang Bin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfall and drought events on grassland ecosystems[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1008-1018. ] |
[15] | Feng X, Fu B, Piao S, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11): 1019-1022. |
[16] | Yin L, Dai E, Zheng D, et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity?[J]. Ecological Indicators, 2020, 112: 106013, doi: 10.1016/j.ecolind.2019.106013. |
[17] | Wang Y, Zhang Z, Chen X. The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities?[J]. Forests, 2022, 13(1): 82, doi: 10.3390/f13010082. |
[18] | 申震洲, 姚文艺, 肖培青, 等. 黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展[J]. 水利水运工程学报, 2020(4): 64-71. |
[18] | [Shen Zhenzhou, Yao Wenyi, Xiao Peiqing, et al. Research progress of spatial distribution about geomorphology-vegetation-water erosion in Pisha stone area of Yellow River[J]. Hydro-Science and Engineering, 2020(4): 64-71. ] |
[19] | 童成立, 张文菊, 汤阳, 等. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005, 26(3): 165-169. |
[19] | [Tong Chengli, Zhang Wenju, Tang Yang, et al. Estimation of daily solar radiation in China[J]. Chinese Journal of Agrometeorology, 2005, 26(3): 165-169. ] |
[20] | 施亚林, 曹艳萍, 苗书玲. 黄河流域草地净初级生产力时空动态及其驱动机制[J]. 生态学报, 2023, 43(2): 731-743. |
[20] | [Shi Yalin, Cao Yanping, Miao Shuling. Spatiotemporal dynamics of grassland net primary productivity and its driving mechanisms in the Yellow River Basin[J]. Acta Ecologica Sinica, 2023, 43(2): 731-743. ] |
[21] | He Y, Yan W, Cai Y, et al. How does the Net primary productivity respond to the extreme climate under elevation constraints in mountainous areas of Yunnan, China?[J]. Ecological Indicators, 2022, 138: 108817, doi: 10.1016/j.ecolind.2022.108817. |
[22] | 陈玉森, 艾柯代·艾斯凯尔, 王永东, 等. 1994—2018年哈萨克斯坦首都圈植被NPP时空变化特征及驱动因素[J]. 干旱区研究, 2022, 39(6): 1917-1929. |
[22] | [Chen Yusen, Akida Askarl, Wang Yongdong, et al. Characteristics and drivers of the spatial-temporal change of net primary productivity in the capital area of Kazakhstan from 1994 to 2018[J]. Arid Zone Research, 2022, 39(6): 1917-1929. ] |
[23] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[23] | [Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008. ] |
[24] | 宋梦来, 陈海涛, 丁晗, 等. 1990—2020年天津市植被覆盖度时空演变特征及影响因素分析[J]. 水土保持研究, 2023, 30(1): 154-163. |
[24] | [Song Menglai, Chen Haitao, Ding Han, et al. Temporal and spatial variation characteristic and influencing factors of vegetation coverage in Tianjin during 1990-2020[J]. Research of Soil and Water Conservation, 2023, 30(1): 154-163. ] |
[25] | 徐勇, 郑志威, 戴强玉, 等. 顾及时滞效应的西南地区植被NPP变化归因分析[J]. 农业工程学报, 2022, 38(9): 297-305. |
[25] | [Xu Yong, Zheng Zhiwei, Dai Qiangyu, et al. Attribution analysis of vegetation NPP variation in Southwest China considering time-lag effects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 297-305. ] |
[26] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[26] | [Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593. ] |
[27] | 阿多, 赵文吉, 宫兆宁, 等. 1981—2013华北平原气候时空变化及其对植被覆盖度的影响[J]. 生态学报, 2017, 37(2): 576-592. |
[27] | [A Duo, Zhao Wenji, Gong Zhaoning, et al. Temporal analysis of climate change and its relationship with vegetation cover on the North China plain from 1981 to 2013[J]. Acta Ecologica Sinica, 2017, 37(2): 576-592. ] |
[28] | 金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[28] | [Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974. ] |
[29] | Ma M, Wang Q, Liu R, et al. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and-accumulation effects[J]. Science of the Total Environment, 2023, 860: 160527, doi: 10.1016/j.scitotenv.2022.160527. |
[30] | 刘斌, 孙艳玲, 王中良, 等. 华北地区植被覆盖变化及其影响因子的相对作用分析[J]. 自然资源学报, 2015, 30(1): 12-23. |
[30] | [Liu Bin, Sun Yanling, Wang Zhongliang, et al. Analysis of the vegetation cover change and the relative role of its influencing factors in North China[J]. Journal of Natural Resources, 2015, 30(1): 12-23. ] |
[31] | 刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019, 30(7): 2309-2319. |
[31] | [Liu Yangyang, Wang Qian, Yang Yue, et al. Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau,China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2309-2319. ] |
[32] | 李学峰, 饶良懿, 徐也钦. 砒砂岩不同类型区土壤氮磷养分特征[J]. 农业工程学报, 2022, 38(5): 139-147. |
[32] | [Li Xuefeng, Rao Liangyi, Xu Yeqin. Characteristics of soil nitrogen and phosphorus nutrients in different Pisha sandstone areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 139-147. ] |
[33] | 杜睿哲, 李文栋, 高文浩, 等. 气候、地表覆被变化对砒砂岩区风蚀时空变化的影响[J]. 水土保持研究, 2023, 30(5): 1-10. |
[33] | [Du Ruizhe, Li Wendong, Gao Wenhao, et al. Influence of climate and surface cover changes on spatiotemporal changes of wind erosion in Pisha sandstone area[J]. Research of Soil and Water Conservation, 2023, 30(5): 1-10. ] |
[34] | 包雪源, 杨振奇, 郭建英, 等. 黄河流域砒砂岩区典型水土保持植被生长特征及限制因素研究[J]. 西北林学院学报, 2023, 38(1): 50-57. |
[34] | [Bao Xueyuan, Yang Zhenqi, Guo Jianying, et al. Growth characteristics and limiting factors of typical soil and water conservation vegetation in the feldspathic sandstone region of the Yellow River[J]. Journal of Northwest Forestry University, 2023, 38(1): 50-57. ] |
[35] | Chen S, Zhang Q, Chen Y, et al. Vegetation change and eco-environmental quality evaluation in the Loess Plateau of China from 2000 to 2020[J]. Remote Sensing, 2023, 15(2): 424. |
[36] | 刘铮, 杨金贵, 马理辉, 等. 黄土高原草地净初级生产力时空趋势及其驱动因素[J]. 应用生态学报, 2021, 32(1): 113-122. |
[36] | [Liu Zheng, Yang Jingui, Ma Lihui, et al. Spatial-temporal trend of grassland net primary production and their driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 113-122. ] |
[37] | 何航, 张勃, 候启, 等. 1982—2015年中国北方生长季NDVI变化及其对气温极值的响应[J]. 干旱区研究, 2020, 37(1): 244-253. |
[37] | [He Hang, Zhang Bo, Hou Qi, et al. Spatiotemporal change of NDVI and its response to extreme temperature indices in North China from 1982 to 2015[J]. Arid Zone Research, 2020, 37(1): 244-253. ] |
[38] | 崔嵩, 贾朝阳, 郭亮, 等. 不同海拔梯度下极端气候事件对松花江流域植被NPP的影响[J]. 环境科学, 2023: 1-17, doi: 10.13227/j.hjkx.202301118. |
[38] | [Cui Song, Jia Zhaoyang, Guo Liang, et al. Impacts of extreme climate events at different altitudinal gradient on vegetation NPP in Songhua River Basin[J]. Environmental Science, 2023: 1-17, doi: 10.13227/j.hjkx.202301118. ] |
[39] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学: 地球科学, 2019, 49(9): 1321-1334. |
[39] | [Piao Shilong, Zhang Xinping, Chen Anping, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Science China Earth Sciences, 2019, 49(9): 1321-1334. ] |
[40] | Xu X, Jiang H, Guan M, et al. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015[J]. Science of the Total Environment, 2020, 744: 140784, doi:10.1016/j.scitotenv.2020.140784. |
[41] | 袁沫汐, 赵林, 李鑫鑫, 等. 1982—2015年中国温带不同草地植被枯黄期对极端气候事件的响应[J]. 生态学报, 2023, 14(43): 1-18. |
[41] | [Yuan Moxi, Zhao Lin, Li Xinxin, et al. Diverse responses of end of growing season to extreme climate events in different grasslands in temperate China during 1982-2015[J]. Acta Ecologica Sinica, 2023, 14(43): 1-18. ] |
[42] | Wan S, Xia J, Liu W, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration[J]. Ecology, 2009, 90(10): 2700-2710. |
[43] | 任晋媛, 佟斯琴, 包玉海, 等. 内蒙古地区极端气候变化及其对植被净初级生产力的影响[J]. 生态学杂志, 2021, 40(8): 2410-2420. |
[43] | [Ren Jinyuan, Tong Siqin, Bao Yuhai, et al. Changes of extreme climate and its effect on net primary productivity in Inner Mongolia[J]. Chinese Journal of Ecology, 2021, 40(8): 2410-2420. ] |
[44] | 赵杰, 杜自强, 武志涛, 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响[J]. 地理学报, 2018, 73(3): 395-404. |
[44] | [Zhao Jie, Du Ziqiang, Wu Zhitao, et al. Seasonal variations of day-and nighttime warming and their effects on vegetation dynamics in China’s temperate zone[J]. Acta Geographica Sinica, 2018, 73(3): 395-404. ] |
[45] | Kou P, Xu Q, Jin Z, et al. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau[J]. Science of the Total Environment, 2021, 778: 146065, doi: 10.1016/j.scitotenv.2021.146065. |
[46] | 姚文艺, 申震洲, 姚京威, 等. 黄河砒砂岩区生态治理关键技术研究[J]. 华北水利水电大学学报(自然科学版), 2023, 44(5): 1-12. |
[46] | [Yao Wenyi, Shen Zhenzhou, Yao Jingwei, et al. Research on key technologies of ecological control in the Pisha sandstone region of the Yellow River Basin[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2023, 44(5): 1-12. ] |
[47] | 安天杭. 荒山的绿色蜕变——写在晋陕蒙砒砂岩区沙棘生态工程实施20年之际[J]. 中国水利, 2018(21): 12-17. |
[47] | [An Tianhang. Green transformation of barren mountain-tritten 20 years after the implementation of Seabuckthorn ecological project in the Pisha sandstone area of Shanxi, Shaanxi and Mongolia[J]. China Water Resources, 2018(21): 12-17. ] |
[48] | 马晓妮, 任宗萍, 谢梦瑶, 等. 砒砂岩区植被覆盖度环境驱动因子量化分析——基于地理探测器[J]. 生态学报, 2022, 42(8): 3389-3399. |
[48] | [Ma Xiaoni, Ren Zongping, Xie Mengyao, et al. Quantitative analysis of environmental driving factors of vegetation coverage in the Pisha sandstone area based on geodetector[J]. Acta Ecologica Sinica, 2022, 42(8): 3389-3399. ] |
[49] | 朱锐鹏, 刘殿君, 张世豪, 等. 黄土丘陵沟壑区不同土地利用类型水土流失效应[J]. 水土保持研究, 2022, 29(4): 10-17. |
[49] | [Zhu Ruipeng, Liu DianJun, Zhang Shihao, et al. Characteristics of runoff and sediment yield in different land use types in hilly and gully region of the Loess Plateau[J]. Research of Soil and Water Conservation, 2022, 29(4): 10-17. ] |
[50] | 杨振奇, 郭建英, 秦富仓, 等. 天然降雨条件下裸露砒砂岩区人工植被的减流减沙效应[J]. 水土保持研究, 2022, 29(1): 100-104. |
[50] | [Yang Zhenqi, Guo Jianying, Qin Fucang, et al. Effect of artificial vegetation on runoff and sediment reduction by in exposed feldspathic sandstone region under natural rainfall[J]. Research of Soil and Water Conservation, 2022, 29(1): 100-104. ] |
[51] | 张鹤, 费洪岩, 韩凤朋, 等. 植被恢复和覆土厚度对砒砂岩区土壤水分及养分的影响[J]. 水土保持通报, 2022, 42(2): 98-106. |
[51] | [Zhang He, Fei Hongyan, Han Fengpeng, et al. Effects of vegetation restoration and soil thickness on soil moisture and nutrient in feldspathic sandstone area[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 98-106. ] |
[52] | Gang C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China[J]. Science of the Total Environment, 2018, 645: 827-836. |
[53] | Mu S, Zhou S, Chen Y, et al. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China[J]. Global and Planetary Change, 2013, 108: 29-41. |
/
〈 | 〉 |